Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz Oral Res ; 37: e085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729290

RESUMEN

The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution.


Asunto(s)
Reflujo Gastroesofágico , Desgaste de los Dientes , Humanos , Película Dental , Espectrometría de Masas en Tándem , Durapatita
2.
J Appl Oral Sci ; 31: e20230108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37493702

RESUMEN

BACKGROUND: Polyphenols interact with salivary proteins and thus can improve the pellicle's erosion protective properties. This effect could be exploited to create rinsing solutions with polyphenols as active ingredients for erosion prevention. Different from the current gold standard for erosion protective rinsing solutions, these rinses would not rely on stannous ions. This would offer alternatives for patients with concerns regarding the composition of rinsing solutions and preferring bio-products. OBJECTIVE: To develop an erosion-preventive rinsing solution containing natural polyphenol-rich extracts. METHODOLOGY: Solutions were prepared with polyphenols from either grapeseed extract or cranberry extract, 500 ppm fluoride added, and additionally flavors and sweeteners. Controls were deionized water, 500 ppm fluoride solution, and the gold standard rinse in the field (Sn2+/F-). In total, 135 enamel specimens (n=15/group) were subjected to five cycles of salivary pellicle formation (30 min, 37°C), modification with the solutions (2 min, 25°C), further salivary pellicle formation (60 min, 37°C), and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), surface reflection intensity (rSRI), and amount of calcium release (CaR) were investigated. Data were analyzed with Kruskal-Wallis and Wilcoxon rank sum tests (α=0.05). RESULTS: The polyphenol solutions containing fluoride, as well as additional flavors, protected enamel better than fluoride alone, and similar to the Sn2+/F- solution, when investigating both rSMH and CaR. When measuring rSRI, Sn2+/F- showed the best protection, while the polyphenol solutions were similar to fluoride. CONCLUSION: For two of the three assessed parameters (rSMH and CaR), both developed polyphenol-rich rinsing solutions were able to protect enamel from erosion, improving/potentializing the effect of fluoride and matching the protection offered by the current gold standard rinsing solution.


Asunto(s)
Fluoruros , Erosión de los Dientes , Humanos , Erosión de los Dientes/prevención & control , Película Dental , Esmalte Dental , Calcio , Polifenoles/farmacología , Fluoruro de Sodio/farmacología
3.
J. appl. oral sci ; J. appl. oral sci;31: e20230108, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1448553

RESUMEN

Abstract Polyphenols interact with salivary proteins and thus can improve the pellicle's erosion protective properties. This effect could be exploited to create rinsing solutions with polyphenols as active ingredients for erosion prevention. Different from the current gold standard for erosion protective rinsing solutions, these rinses would not rely on stannous ions. This would offer alternatives for patients with concerns regarding the composition of rinsing solutions and preferring bio-products. Objective To develop an erosion-preventive rinsing solution containing natural polyphenol-rich extracts. Methodology Solutions were prepared with polyphenols from either grapeseed extract or cranberry extract, 500 ppm fluoride added, and additionally flavors and sweeteners. Controls were deionized water, 500 ppm fluoride solution, and the gold standard rinse in the field (Sn2+/F-). In total, 135 enamel specimens (n=15/group) were subjected to five cycles of salivary pellicle formation (30 min, 37°C), modification with the solutions (2 min, 25°C), further salivary pellicle formation (60 min, 37°C), and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), surface reflection intensity (rSRI), and amount of calcium release (CaR) were investigated. Data were analyzed with Kruskal-Wallis and Wilcoxon rank sum tests (α=0.05). Results The polyphenol solutions containing fluoride, as well as additional flavors, protected enamel better than fluoride alone, and similar to the Sn2+/F- solution, when investigating both rSMH and CaR. When measuring rSRI, Sn2+/F- showed the best protection, while the polyphenol solutions were similar to fluoride. Conclusion For two of the three assessed parameters (rSMH and CaR), both developed polyphenol-rich rinsing solutions were able to protect enamel from erosion, improving/potentializing the effect of fluoride and matching the protection offered by the current gold standard rinsing solution.

4.
Braz. oral res. (Online) ; 37: e085, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, BBO - Odontología | ID: biblio-1513886

RESUMEN

Abstract The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution.

5.
Caries Res ; 56(2): 138-145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168236

RESUMEN

This study evaluated the combination of a sugarcane cystatin (CaneCPI-5) and sodium fluoride (NaF) in acquired pellicle engineering for the prevention of dental erosion in vitro. Seventy-five human enamel specimens were prepared and divided into 5 treatment groups (n = 15/group): Deionized water (Control); Elmex™ (SnCl2/NaF/AmF); 0.1 mg/mL CaneCPI-5; 500 ppm NaF; and CaneCPI-5+NaF (Combination). The specimens were individually treated (200 µL; 2 min; 37°C), then incubated in human saliva (200 µL; 1 h, at 37°C) for acquired pellicle formation. Afterward, the specimens were submitted to an erosive challenge (1% citric acid [CR], pH 3.6, 10 mL, 2 min, 25 °C). This sequence was conducted 5 times. Percentage of surface microhardness change (%SMC), relative surface reflection intensity (rSRI), and calcium released to the CR were measured and analyzed by one-way ANOVA followed by Tukey's test (p < 0.05). In general, all the treatments (SnCl2/NaF/AmF, CaneCPI-5, NaF, and Combination) significantly protected the enamel when compared the control group. Regarding %SMC and rSRI, the Combination was the most effective treatment, reducing the %SMC significantly (p < 0.01) when compared to all the other treatments, although this difference was not significant in the CR analysis. All treatments demonstrated a protective effect on enamel against dental erosion; however, the combination of CaneCPI-5 with NaF showed a greater protection.


Asunto(s)
Cistatinas , Saccharum , Erosión de los Dientes , Película Dental , Fluoruros/farmacología , Humanos , Fluoruro de Sodio/farmacología , Erosión de los Dientes/prevención & control
6.
Eur J Oral Sci ; 128(6): 487-494, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33200856

RESUMEN

This study compared the protein profile of the acquired enamel pellicle (AEP) formed under three conditions: in vitro, in situ, and in vivo. Nine volunteers participated in all procedures. In the in vitro condition, the volunteers donated saliva, in which specimens were incubated to form the AEP. In the in situ condition, the volunteers used an oral device containing specimens where the AEP was formed. In the in vivo condition, the AEP was collected from the volunteers own teeth. All AEPs were formed for 120 min, collected and processed by mass spectrometry. Overall, a total of 321 proteins were identified, among which 37 proteins are commonly considered typical in the AEP. For each of the in vitro, in situ, and in vivo conditions, respectively, 66, 174, and 170 proteins were identified. For the in vitro condition, 17 pellicle-typical proteins were not identified. Furthermore, several proteins with important functions within the AEP presented differences in expression in the three conditions. The qualitative profile of the proteins, especially the typical ones, is different in the in vitro condition. In addition, there are important quantitative differences that may interfere when attempting to extrapolate in vitro results to an in situ and in vivo condition.


Asunto(s)
Proteómica , Saliva , Película Dental , Humanos , Proteínas
7.
Caries Res ; 54(5-6): 466-474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33171464

RESUMEN

OBJECTIVE: Saliva is the most important biological factor to protect against erosive tooth wear (ETW). Gastroesophageal reflux disease (GERD) patients have an increased risk of ETW due to the frequent presence of intrinsic acids in the oral cavity. Remarkably, not all GERD patients suffer from ETW, which might be due to differences in the composition of the saliva. METHODS: This study compared the proteomic profile of saliva in patients (1) with GERD and ETW (basic erosive wear examination, BEWE, score ≥9; GE group) and (2) with GERD without ETW (BEWE = 0; GNE group) using shotgun label-free quantitative proteomic analysis nLC-ESI-MS/MS. The ability of hemoglobin (Hb) to protect against initial enamel erosion caused by a daily 10-s immersion of enamel specimens in 0.01 M HCl (pH 2.3) for 3 days was evaluated in vitro for proof of concept. Surface hardness change was used as response variable. RESULTS: The differential expression of Hb subunits was significantly increased in the GNE group versus the GE group, in particular the Hb α-subunit that showed a >22-fold increase. Expressions of serum albumin (4.5-fold) and isoforms of cytoskeletal keratin type II (>3-fold) were also increased in the GNE group. Proteinase inhibitors, such as α1-antitrypsin and α2-macroglobulin, were only identified in the GNE group. In vitro, Hb (1.0 and 4.0 mg/mL) significantly reduced initial enamel erosion compared to a negative control after 3 days. CONCLUSIONS: Our results indicate that many proteins, with special emphasis on Hb, may be involved in the resistance of GERD patients to the occurrence of ETW. These proteins may be candidates for inclusion in dental products to protect against ETW.


Asunto(s)
Reflujo Gastroesofágico , Erosión de los Dientes , Desgaste de los Dientes , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/prevención & control , Hemoglobinas , Humanos , Prevalencia , Proteómica , Espectrometría de Masas en Tándem , Erosión de los Dientes/etiología , Erosión de los Dientes/prevención & control
8.
J Dent ; 81: 64-69, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30579861

RESUMEN

OBJECTIVES: This in vivo study compared the protein profile of the acquired enamel pellicle (AEP) in volunteers 1) with gastroesophageal reflux disease (GERD) and erosive tooth wear (ETW) (BEWE ≥ 9; GE group); 2) with GERD without ETW (BEWE = 0; GNE group) and 3) control (without GERD and BEWE = 0; C group). MATERIALS AND METHODS: Twenty-four subjects (8/group) participated. AEP was formed during 120 min and collected. After protein extraction, the samples were submitted to reverse phase liquid chromatography coupled to mass spectrometry. Label-free proteomic quantification was performed using Protein Lynx Global Service software. RESULTS: In total, 458 proteins were identified. Seventy-six proteins were common to all the groups. The proteomic profile of the AEP was quite different among the distinct groups. The numbers of proteins exclusively found in the C, GE and GNE groups were 113, 110 and 81, respectively. Most of the proteins exclusively identified in the C and GNE groups bind metals, while those in the GE group are mainly membrane proteins. Many proteins were found exclusively in the reflux groups. In the quantitative analyses, when the GNE group was compared with the GE group, the proteins with the highest decreases were Lysozyme C, Antileukoproteinase, Cathepsin G, Neutrophil defensins and Basic salivary proline-rich proteins, while those with the highest increases were subunits of Hemoglobin, Albumin and isoforms of Cystatin. CONCLUSION: Profound alterations in the proteomic profile of the AEP were seen in GNE compared with GE volunteers, which might play a role in the resistance to ETW seen in the first. CLINICAL SIGNIFICANCE: This pioneer study compared the proteomic profile of the AEP of patients with GERD with or without ETW. Increased proteins in those without ETW might be protective and are good candidates to be added to dental products to protect against erosion caused by intrinsic acids.


Asunto(s)
Película Dental/metabolismo , Reflujo Gastroesofágico/metabolismo , Erosión de los Dientes , Desgaste de los Dientes , Humanos , Proteómica , Atrición Dental
9.
Proteins ; 80(9): 2323-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22622866

RESUMEN

Cupiennius salei single insulin-like growth factor binding domain protein (SIBD-1) is an 8.6 kDa Cys-, Pro-, and Gly-rich protein, discovered in the hemocytes of the Central American hunting spider Cupiennius salei. SIBD-1 exhibits high sequence similarity to the N-terminal domain of the insulin-like growth factor-binding protein superfamily and has been reported to play an important role in the spider's immune system. Here, the recombinant expression and the elucidation of the three-dimensional structure of recombinant SIBD-1 and the characterization of the sugar moiety at Thr2 of native SIBD-1 is described in detail.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteínas Recombinantes/química , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/metabolismo , América Central , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/metabolismo , Arañas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA