Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(13): 3707-3722, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060269

RESUMEN

Warm drylands represent 19% of land surfaces worldwide and host ca. 1100 tree species. The risk of decline due to climate aridification of this neglected biodiversity has been overlooked despite its ecological and societal importance. To fill this gap, we assessed the risk of decline due to climate aridification of tree species in warm drylands based on spatialized occurrence data and climate models. We considered both species vulnerability and exposure, compared the risk of tree species decline across five bioregions and searched for phylogenetic correlates. Depending on the future climate model, from 44% to 88% of warm drylands' tree species will undergo climate aridification with a high risk of decline even under the most optimistic conditions. On a regional scale, the rate of species that will undergo climate aridification in the future varies from 21% in the Old World North, to 90% in Australia, with a risk of decline confirming the high level of risk predicted at the global scale. Using generalized linear mixed models, we found that, species more exposed to climate aridification will be more at risk, but also that species vulnerability is a key driver of their risk of decline. Indeed, the warm drylands specialist species will be less at risk due to climate aridification than species being marginal in warm drylands. We also found that the risk of decline is widespread across the main clades of the phylogeny and involves several evolutionary distinct species. Estimating a high risk of decline for numerous tree species in all warm drylands, including emblematic dryland endemics, our work warns that future increase in aridity could result in an extensive erosion of tree biodiversity in these ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Filogenia , Biodiversidad , Clima
2.
Mol Ecol ; 31(15): 4095-4111, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35691023

RESUMEN

Intense research efforts over the last two decades have renewed our understanding of plant phylogeography and domestication in the Mediterranean basin. Here we aim to investigate the evolutionary history and the origin of domestication of the carob tree (Ceratonia siliqua), which has been cultivated for millennia for food and fodder. We used >1000 microsatellite genotypes to delimit seven carob evolutionary units (CEUs). We investigated genome-wide diversity and evolutionary patterns of the CEUs with 3557 single nucleotide polymorphisms generated by restriction-site associated DNA sequencing (RADseq). To address the complex wild vs. cultivated status of sampled trees, we classified 56 sampled populations across the Mediterranean basin as wild, seminatural or cultivated. Nuclear and cytoplasmic loci were identified from RADseq data and separated for analyses. Phylogenetic analyses of these genomic-wide data allowed us to resolve west-to-east expansions from a single long-term refugium probably located in the foothills of the High Atlas Mountains near the Atlantic coast. Our findings support multiple origins of domestication with a low impact on the genetic diversity at range-wide level. The carob was mostly domesticated from locally selected wild genotypes and scattered long-distance westward dispersals of domesticated varieties by humans, concomitant with major historical migrations by Romans, Greeks and Arabs. Ex situ efforts to preserve carob genetic resources should prioritize accessions from both western and eastern populations, with emphasis on the most differentiated CEUs situated in southwest Morocco, south Spain and eastern Mediterranean. Our study highlights the relevance of wild and seminatural habitats in the conservation of genetic resources for cultivated trees.


Asunto(s)
Domesticación , Fabaceae , Filogenia , Fabaceae/genética , Frutas , Galactanos , Variación Genética , Mananos , Región Mediterránea , Gomas de Plantas
3.
PeerJ ; 9: e11039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854841

RESUMEN

BACKGROUND: Quantifying variation of genetic traits over the geographical range of species is crucial for understanding the factors driving their range dynamics. The center-periphery hypothesis postulates, and many studies support, the idea that genetic diversity decreases and genetic differentiation increases toward the geographical periphery due to population isolation. The effects of environmental marginality on genetic variation has however received much less attention. METHODS: We tested the concordance between geographical and environmental gradients and the genetic predictions of center-periphery hypothesis for endemic Lilium pomponium in the southern Alps. RESULTS: We found little evidence for concordance between genetic variation and both geographical and environmental gradients. Although the prediction of increased differentiation at range limits is met, genetic diversity does not decrease towards the geographical periphery. Increased differentiation among peripheral populations, that are not ecologically marginal, may be explained by a decrease in habitat availability that reduces population connectivity. In contrast, a decrease of genetic diversity along environmental but not geographical gradients may be due to the presence of low quality habitats in the different parts of the range of a species that reduce effective population size or increase environmental constraints. As a result, environmental factors may affect population dynamics irrespective of distance from the geographical center of the range. In such situations of discordance between geographical and environmental gradients, the predictions of decreasing genetic diversity and increasing differentiation toward the geographical periphery may not be respected.

4.
Appl Plant Sci ; 6(12): e01201, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30598859

RESUMEN

PREMISE OF THE STUDY: Simple sequence repeat (SSR) or microsatellite markers have been used in a broad range of studies mostly scoring alleles on the basis of amplicon size as a proxy for the number of repeat units of an SSR motif. However, additional sources of variation within the SSR or in the flanking regions have largely remained undetected. METHODS: In this study, we implemented a next-generation sequencing-based genotyping approach in a newly characterized set of 18 nuclear SSR markers for the carob tree, Ceratonia siliqua. Our aim was to evaluate the effect of three different methods of scoring molecular variation present within microsatellite markers on the genetic diversity and structure results. RESULTS: The analysis of the sequences of 77 multilocus genotypes from four populations revealed SSR variation and additional sources of polymorphism in 87% of the loci analyzed (42 single-nucleotide polymorphisms and five insertion/deletion polymorphisms), as well as divergent paralog copies in two loci. Ignoring sequence variation under standard amplicon size genotyping resulted in incorrect identification of 69% of the alleles, with important effects on the genetic diversity and structure estimates. DISCUSSION: Next-generation sequencing allows the detection and scoring of SSRs, single-nucleotide polymorphisms, and insertion/deletion polymorphisms to increase the resolution of population genetic studies.

5.
Mol Ecol ; 26(2): 431-443, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27862542

RESUMEN

Positive species-genetic diversity correlations (SGDCs) are often thought to result from the parallel influence of neutral processes on genetic and species diversity. Yet, confounding effects of non-neutral mechanisms have not been explored. Here, we investigate the impact of non-neutral genetic diversity on SGDCs in high Andean wetlands. We compare correlations between plant species diversity and genetic diversity (GD) calculated with and without loci potentially under selection (outlier loci). The study system includes 2188 specimens from five species (three common aquatic macroinvertebrate and two dominant plant species) that were genotyped for 396 amplified fragment length polymorphism loci. We also appraise the importance of neutral processes on SGDCs by investigating the influence of habitat fragmentation features. Significant positive SGDCs were detected for all five species (mean SGDC = 0.52 ± 0.05). While only a few outlier loci were detected in each species, they resulted in significant decreases in GD and in SGDCs. This supports the hypothesis that neutral processes drive species-genetic diversity relationships in high Andean wetlands. Unexpectedly, the effects on genetic diversity GD of the habitat fragmentation characteristics in this study increased with the presence of outlier loci in two species. Overall, our results reveal pitfalls in using habitat features to infer processes driving SGDCs and show that a few loci potentially under selection are enough to cause a significant downward bias in SGDC. Investigating confounding effects of outlier loci thus represents a useful approach to evidence the contribution of neutral processes on species-genetic diversity relationships.


Asunto(s)
Biodiversidad , Variación Genética , Plantas/clasificación , Selección Genética , Humedales , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Chile , Genotipo
6.
Mol Phylogenet Evol ; 97: 187-195, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26804816

RESUMEN

Understanding the origin and evolution of Mediterranean vascular flora within the long-term context of climate change requires a continuous study of historical biogeography supported by molecular phylogenetic approaches. Here we provide new insights into the fascinating but often overlooked diversification of Mediterranean xerophytic plants. Growing in some of the most stressing Mediterranean environments, i.e. coastal and mountainous opened habitats, the circum-Mediterranean Astragalus L. sect. Tragacantha DC. (Fabaceae) gathers several thorny cushion-like taxa. These have been the subjects of recent taxonomical studies, but they have not yet been investigated within a comprehensive molecular framework. Bayesian phylogenetics applied to rDNA ITS sequences reveal that the diversification of A. sect. Tragacantha has roots dating back to the Pliocene, and the same data also indicate an eastern-western split giving rise to the five main lineages that exist today. In addition, AFLP fingerprinting supports an old east-west pattern of vicariance that completely rules out the possibility of a recent eastern origin for western taxa. The observed network of genetic relationships implies that contrary to what is widely claimed in the taxonomic literature, it is range fragmentation, as opposed to a coastal-to-mountain ecological shift, that is likely the main driver of diversification.


Asunto(s)
Fabaceae/clasificación , Fabaceae/genética , Filogenia , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , Cambio Climático , ADN Ribosómico/genética , Ecosistema , Evolución Molecular , Región Mediterránea , Filogeografía
7.
PLoS One ; 8(9): e73795, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24058489

RESUMEN

The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP) were obtained from 215 individuals collected from 23 wadis (temporary rivers) in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n'Ajjer and Tassili n'Immidir ranges). Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions.


Asunto(s)
Adaptación Fisiológica/genética , Variación Genética , Genotipo , Repeticiones de Microsatélite , Familia de Multigenes , Myrtus/genética , África del Norte , Altitud , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , Clima Desértico , Ecosistema , Agua Dulce , Análisis Multivariante , Myrtus/clasificación , Filogenia , Filogeografía
8.
Ann Bot ; 112(7): 1409-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23962409

RESUMEN

BACKGROUND AND AIMS: Understanding the factors that shape variation in genetic diversity across the geographic ranges of species is an important challenge in the effort to conserve evolutionary processes sustaining biodiversity. The historical influences leading to a central-marginal organization of genetic diversity have been explored for species whose range is known to have expanded from refugia after glacial events. However, this question has rarely been addressed for Mediterranean endemic plants of azonal habitats such as rocky slopes or screes. In this context, this comprehensive study examined molecular and field data from Arenaria provincialis (Caryophyllaceae), a narrow endemic plant of south-eastern France. METHODS: Across the whole geographic range, an investigation was made of whether high levels of abundance and genetic diversity (estimated from amplified fragment length polymorphism markers) are centrally distributed, to evaluate the relevance of the central-marginal hypothesis. Phylogeographic patterns inferred from chloroplast DNA (cpDNA) were used, applying Bayesian methods to test the influence of past biogeographic events. Multivariate analysis combining phylogeographic and ecological data was used to reveal the historical and ecological distinctiveness of populations. KEY RESULTS: Despite the narrow distribution of A. provincialis, a high level of nucleotide variation is found within cpDNA loci, supporting its persistence throughout the Pleistocene period. The area characterized by the highest genetic diversity is centrally located. Structured phylogeography and Bayesian factor analysis supported the hypothesis that the central area of the distribution was the source of both westward and eastward migrations, probably during arid periods of the Pleistocene, and more recently was a crossroads of backward migrations. By contrast, the two areas located today at the range limits are younger, have reduced genetic diversity and are marginal in the ecological gradients. CONCLUSIONS: This study highlights a case of strong population distinctiveness within a narrow range. Phylogeography sheds light on the historical role of the areas centrally situated in the distribution. The current range size and abundance patterns are not sufficient to predict the organization of genetic diversity.


Asunto(s)
Arenaria/genética , Modelos Biológicos , Filogeografía , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Secuencia de Bases , ADN de Cloroplastos/genética , Francia , Haplotipos/genética , Región Mediterránea , Filogenia
9.
C R Biol ; 332(7): 652-61, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19523605

RESUMEN

The effects of landscape configuration on the genetic connectivity of the heterostylous species Primula vulgaris Huds. (Primulaceae) were studied using AFLP markers. Isolation by distance pattern was shown by spatial autocorrelation analysis; moreover, hedgerow network distances were found to contribute less than Euclidian distances to spatial genetic structure. Pollen flow is probably the main factor shaping the spatial genetic structure rather than seed dispersal, which is limited in this myrmecochorous species. Detailed analysis on the genetic similarity between neighborhoods and differentiation rates showed that density of hedgerow networks impede gene flow. We therefore concluded that a high degree of habitat contiguity does not necessarily promote genetic connectivity.


Asunto(s)
Agricultura , Genes de Plantas/fisiología , Variación Genética , Primula/genética , ADN de Plantas/genética , Interpretación Estadística de Datos , Francia , Marcadores Genéticos , Polen/fisiología , Polimorfismo Genético/genética , Semillas/fisiología
10.
Mol Biol Evol ; 19(8): 1218-27, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12140233

RESUMEN

Spartina x townsendii arose during the end of the 19th century in England by hybridization between the indigenous Spartina maritima and the introduced Spartina alterniflora, native to the eastern seaboard of North America. Duplication of the hybrid genome gave rise to Spartina anglica, a vigorous allopolyploid involved in natural and artificial invasions on several continents. This system allows investigation of the early evolutionary changes that accompany stabilization of new allopolyploid species. Because allopolyploidy may be a genomic shock, eliciting retroelement insertional activity, we examined whether retrotransposons present in the parental species have been activated in the genome of S. anglica. For this purpose we used inter-retrotransposon amplified polymorphism (IRAP) and retrotransposons-microsatellite amplified polymorphism (REMAP) markers, which are multilocus PCR-based methods detecting retrotransposon integration events in the genome. IRAP and REMAP allowed the screening of insertional polymorphisms in populations of S. anglica. The populations are composed mainly of one major multilocus genotype, identical to the first-generation hybrid S. x townsendii. Few new integration sites were encountered in the young allopolyploid genome. We also found strict additivity of the parental subgenomes in the allopolyploid. Both these findings indicate that the genome of S. anglica has not undergone extensive changes since its formation. This contrasts with previous results from the literature, which report rapid structural changes in experimentally resynthesized allopolyploids.


Asunto(s)
Poaceae/genética , Poliploidía , Retroelementos/genética , ADN de Plantas/análisis , Marcadores Genéticos , Genética de Población , Genotipo , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo Genético/genética , Dinámica Poblacional , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...