Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38392320

RESUMEN

This review provides insights into cellulolytic bacteria present in global forest and agricultural soils over a period of 11 years. It delves into the study of soil-dwelling cellulolytic bacteria and the enzymes they produce, cellulases, which are crucial in both soil formation and the carbon cycle. Forests and agricultural activities are significant contributors to the production of lignocellulosic biomass. Forest ecosystems, which are key carbon sinks, contain 20-30% cellulose in their leaf litter. Concurrently, the agricultural sector generates approximately 998 million tons of lignocellulosic waste annually. Predominant genera include Bacillus, Pseudomonas, Stenotrophomonas, and Streptomyces in forests and Bacillus, Streptomyces, Pseudomonas, and Arthrobacter in agricultural soils. Selection of cellulolytic bacteria is based on their hydrolysis ability, using artificial cellulose media and dyes like Congo red or iodine for detection. Some studies also measure cellulolytic activity in vitro. Notably, bacterial cellulose hydrolysis capability may not align with their cellulolytic enzyme production. Enzymes such as GH1, GH3, GH5, GH6, GH8, GH9, GH10, GH12, GH26, GH44, GH45, GH48, GH51, GH74, GH124, and GH148 are crucial, particularly GH48 for crystalline cellulose degradation. Conversely, bacteria with GH5 and GH9 often fail to degrade crystalline cellulose. Accurate identification of cellulolytic bacteria necessitates comprehensive genomic analysis, supplemented by additional proteomic and transcriptomic techniques. Cellulases, known for degrading cellulose, are also significant in healthcare, food, textiles, bio-washing, bleaching, paper production, ink removal, and biotechnology, emphasizing the importance of discovering novel cellulolytic strains in soil.

2.
J Sci Food Agric ; 99(14): 6601-6607, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31347166

RESUMEN

BACKGROUND: Phosphate-solubilizing bacteria (PSB) can be an environment-friendly strategy to improve crop production in low-phosphorus (P) or P-deficient soils. The effect of indigenous mixed inocula of PSB on Agave angustifolia Haw. growth was assessed. The four treatments evaluated were T1 (Pseudomonas luteola + Enterobacter sp.), T2 (Pseudomonas luteola + Bacillus sp.), T3 (Pseudomonas luteola + Acinetobacter sp.), and T4 (control); each was replicated 25 times using a completely randomized design during 12 months under rain-fed conditions. Additionally, P solubilization in vitro of the mixed inocula with three different sources of inorganic P was tested. RESULTS: The mixed inocula were able to solubilize more P from tricalcium phosphate Ca3 (PO4 )2 than from aluminum phosphate (AlPO4 ) and iron phosphate (FePO4 ). Relative to the control, T2 increased plant height by 22.9%, leaf dry weight by 391.4%, plant stem diameter by 49.6%, and root dry weight by 193.9%. The stem solid soluble content increased 50.0% with T1. Plant-available soil P increased 94.6% with T3 and 77.3% with T1. Soil alkaline phosphatase activity increased 85.9% with T1. CONCLUSION: T2 was the mixed inoculum that most improved Agave angustifolia plant growth. The indigenous mixed inocula of PSB evaluated appears to be a practical and efficient option for promoting field growth of Agave angustifolia plants. However, further research is necessary to achieve a deeper understanding of the relationships between different PSB species and their effects on agave, which may reveal some of the mechanisms of the synergistic interactions that are involved in the promotion of plant growth. © 2019 Society of Chemical Industry.


Asunto(s)
Acinetobacter/metabolismo , Agave/crecimiento & desarrollo , Agave/microbiología , Inoculantes Agrícolas/metabolismo , Bacillus/metabolismo , Enterobacter/metabolismo , Fosfatos/metabolismo , Pseudomonas/metabolismo , Agave/metabolismo , Fosfatos/química , Microbiología del Suelo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA