Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 16831, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207307

RESUMEN

Understanding the distribution and abundance of heat tolerant corals across seascapes is imperative for predicting responses to climate change and to support novel management actions. Thermal tolerance is variable in corals and intrinsic and extrinsic drivers of tolerance are not well understood. Traditional experimental evaluations of coral heat and bleaching tolerance typically involve ramp-and-hold experiments run across days to weeks within aquarium facilities with limits to colony replication. Field-based acute heat stress assays have emerged as an alternative experimental approach to rapidly quantify heat tolerance in many samples yet the role of key methodological considerations on the stress response measured remains unresolved. Here, we quantify the effects of coral fragment size, sampling time point, and physiological measures on the acute heat stress response in adult corals. The effect of fragment size differed between species (Acropora tenuis and Pocillopora damicornis). Most physiological parameters measured here declined over time (tissue colour, chlorophyll-a and protein content) from the onset of heating, with the exception of maximum photosynthetic efficiency (Fv/Fm) which was surprisingly stable over this time scale. Based on our experiments, we identified photosynthetic efficiency, tissue colour change, and host-specific assays such as catalase activity as key physiological measures for rapid quantification of thermal tolerance. We recommend that future applications of acute heat stress assays include larger fragments (> 9 cm2) where possible and sample between 10 and 24 h after the end of heat stress. A validated high-throughput experimental approach combined with cost-effective genomic and physiological measurements underpins the development of markers and maps of heat tolerance across seascapes and ocean warming scenarios.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Catalasa , Clorofila , Arrecifes de Coral , Respuesta al Choque Térmico , Simbiosis
2.
Biol Open ; 9(1)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31915210

RESUMEN

The rate of coral reef degradation from climate change is accelerating and, as a consequence, a number of interventions to increase coral resilience and accelerate recovery are under consideration. Acropora spathulata coral colonies that survived mass bleaching in 2016 and 2017 were sourced from a bleaching-impacted and warmer northern reef on the Great Barrier Reef (GBR). These individuals were reproductively crossed with colonies collected from a recently bleached but historically cooler central GBR reef to produce pure and crossbred offspring groups (warm-warm, warm-cool and cool-warm). We tested whether corals from the warmer reef produced more thermally tolerant hybrid and purebred offspring compared with crosses produced with colonies sourced from the cooler reef and whether different symbiont taxa affect heat tolerance. Juveniles were infected with Symbiodinium tridacnidorum, Cladocopium goreaui and Durusdinium trenchii and survival, bleaching and growth were assessed at 27.5°C and 31°C. The contribution of host genetic background and symbiont identity varied across fitness traits. Offspring with either both or one parent from the northern population exhibited a 13- to 26-fold increase in survival odds relative to all other treatments where survival probability was significantly influenced by familial cross identity at 31°C but not 27.5°C (Kaplan-Meier P=0.001 versus 0.2). If in symbiosis with D. trenchii, a warm sire and cool dam provided the best odds of juvenile survival. Bleaching was predominantly driven by Symbiodiniaceae treatment, where juveniles hosting D. trenchii bleached significantly less than the other treatments at 31°C. The greatest overall fold-benefits in growth and survival at 31°C occurred in having at least one warm dam and in symbiosis with D. trenchii Juveniles associated with D. trenchii grew the most at 31°C, but at 27.5°C, growth was fastest in juveniles associated with C. goreaui In conclusion, selective breeding with warmer GBR corals in combination with algal symbiont manipulation can assist in increasing thermal tolerance on cooler but warming reefs. Such interventions have the potential to improve coral fitness in warming oceans.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Antozoos/crecimiento & desarrollo , Antozoos/microbiología , Cambio Climático , Simbiosis , Temperatura , Termotolerancia , Aclimatación , Animales , Dinoflagelados , Calor , Océanos y Mares , Selección Artificial
3.
Mol Ecol ; 25(12): 2719-23, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27192557

RESUMEN

Symbiodinium are a diverse group of unicellular dinoflagellates that are important nutritional symbionts of reef-building corals. Symbiodinium putative species ('types') are commonly identified with genetic markers, mostly nuclear and chloroplast encoded ribosomal DNA regions. Population genetic analyses using microsatellite loci have provided insights into Symbiodinium biogeography, connectivity and phenotypic plasticity, but are complicated by: (i) a lack of consensus criteria used to delineate inter- vs. intragenomic variation within species; and (ii) the high density of Symbiodinium in host tissues, which results in single samples comprising thousands of individuals. To address this problem, Wham & LaJeunesse (2016) present a method for identifying cryptic Symbiodinium species from microsatellite data based on correlations between allele size distributions and nongeographic genetic structure. Multilocus genotypes that potentially do not recombine in sympatry are interpreted as secondary 'species' to be discarded from downstream population genetic analyses. However, Symbiodinium species delineations should ideally incorporate multiple physiological, ecological and molecular criteria. This is because recombination tests may be a poor indicator of species boundaries in Symbiodinium due to their predominantly asexual mode of reproduction. Furthermore, discontinuous microsatellite allele sizes in sympatry may be explained by secondary contact between previously isolated populations and by mutations that occur in a nonstepwise manner. Limitations of using microsatellites alone to delineate species are highlighted in earlier studies that demonstrate occasional bimodal distributions of allele sizes within Symbiodinium species and considerable allele size sharing among Symbiodinium species. We outline these issues and discuss the validity of reinterpretations of our previously published microsatellite data from Symbiodinium populations on the Great Barrier Reef (Howells et al. 2013).


Asunto(s)
Alelos , Simbiosis , Animales , Antozoos/genética , Dinoflagelados/genética , Repeticiones de Microsatélite
4.
Mol Ecol Resour ; 11(2): 328-34, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21429140

RESUMEN

We report an accurate multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay, capable of reproducing gene expression profiles from 16 target genes [12 genes of interest (GOIs) and four reference genes (RGs)] in Acropora millepora, a common reef-building model coral species. The 12 GOIs have known or putative roles in the coral bleaching response, yet the method is not restricted to this particular assay and gene set. The procedure is based on the Beckman Coulter (Fullerton, CA, USA) GenomeLab™ GeXP Genetic Analysis System and bridges the gap between quantitative real-time PCR (qPCR) expression analysis of a single or a small number of genes and microarray gene expression surveys of thousands of genes. Despite large variation among biological replicates, the majority of GOIs were up-regulated (up to 4000%) in most colonies during a laboratory-based thermal stress experiment. Two genes, Nf-kß2 and MnSod, were consistently up-regulated in all colonies tested, and we therefore propose these as candidate markers useful for population-level evaluations of thermal stress. Our assay provides an important new tool for coral bleaching studies; because of the lower cost, labour and amount of cDNA required compared with singleplex qPCR, population-level studies with large biological replication are feasible.


Asunto(s)
Antozoos/genética , Perfilación de la Expresión Génica , Animales , Datos de Secuencia Molecular , Proteínas/genética , Temperatura , Transcripción Genética
5.
Science ; 331(6014): 175, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21233378

RESUMEN

Circadian regulation of plant-animal endosymbioses is complicated by a diversity of internal and external cues. Here, we show that stress-related genes in corals are coupled to the circadian clock, anticipating major changes in the intracellular milieu. In this regard, numerous chaperones are "hard-wired" to the clock, effectively preparing the coral for the consequences of oxidative protein damage imposed by symbiont photosynthesis (when O(2) > 250% saturation), including synexpression of antioxidant genes being light-gated. Conversely, central metabolism appears to be regulated by the hypoxia-inducible factor system in coral. These results reveal the complexity of endosymbiosis as well as the plasticity regulation downstream of the circadian clock.


Asunto(s)
Antozoos/genética , Relojes Circadianos , Dinoflagelados/fisiología , Regulación de la Expresión Génica , Simbiosis , Animales , Antozoos/fisiología , Vías Biosintéticas/genética , Ritmo Circadiano , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Chaperonas Moleculares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA