Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Physiol Biochem ; 54(3): 371-383, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32298554

RESUMEN

BACKGROUND/AIMS: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. METHODS: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca2+ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). RESULTS: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5% and 50nM verapamil by 2,8%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. CONCLUSION: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.


Asunto(s)
Biofisica/métodos , Músculo Liso Vascular/efectos de los fármacos , Vasoconstrictores/farmacología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Aorta/efectos de los fármacos , Fenómenos Biomecánicos , Biofisica/instrumentación , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Nifedipino/farmacología , Estrés Mecánico , Vasoconstricción , Verapamilo/farmacología
2.
Cell Physiol Biochem ; 38(3): 1182-98, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26983082

RESUMEN

BACKGROUND/AIMS: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. METHODS: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca2+ channels (S-Bay K8644/verapamil) and Na+ channels (veratridine/lidocaine). RESULTS: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. CONCLUSION: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Miocitos Cardíacos/citología , Estrés Mecánico , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lidocaína/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Verapamilo/farmacología , Veratridina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA