Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 8(16): 4616-4625, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32676631

RESUMEN

Antimicrobial photodynamic therapy (aPDT) and antimicrobial photothermal therapy (aPTT) are promising local and effective alternative therapies for antibiotic resistant bacterial infections and biofilms. A combination of nanoparticles and organic photosensitizers offers a great opportunity to combine PDT and PTT for effective eradication of both planktonic bacteria and their biofilms. In this work, photo-induced antibacterial activity of indocyanine green (ICG), 3-aminopropylsilane coated superparamagnetic iron oxide nanoparticles (APTMS@SPIONs) and ICG loaded APTMS@SPIONs was evaluated on planktonic cells and biofilms of Gram-negative (E. coli, K. pneumoniae, P. aeruginosa) and Gram-positive (S. epidermis) bacteria. A relatively low dose of ICG (25 µg mL-1) and SPIONs (0.425 µg mL-1 nanoparticle) in combination with single, short (10 min) laser irradiation at 808 nm with a power of 1150 mW was used in this study. No dark toxicity of the agents or antibacterial effect of the laser irradiation was observed. The charge of the particles did not provide a significant difference in their penetration to Gram-negative versus Gram-positive bacterial strains or their biofilms. APTMS@SPION/laser treatment completely eliminated P. aeruginosa and provided 7-log reduction in the colony forming unit (CFU) of E. Coli, but was not effective on the other two bacteria. This is the first example for antibacterial phototoxicity of this nanoparticle. ICG/laser and ICG-APTMS@SPION/laser treatments provided complete killing of all planktonic cells. Successful eradication of all biofilms was achieved with ICG/laser (3.2-3.7 log reduction in CFUs) or ICG-APTMS@SPION/laser treatment (3.3-4.4 log reduction in CFUs). However, an exceptionally high, 6.5-log reduction as well as a dramatic difference between ICG versus ICG/APTMS@SPION treatment was observed in K. pneumoniae biofilms with ICG-APTMS@SPION/laser treatment. Investigation of the ROS production and increase in the local temperature of the biofilms that were subjected to phototherapy suggested a combination of aPTT and aPDT mechanisms for phototoxicity, exhibiting a synergistic effect when ICG-APTMS@SPION/laser was used. This approach opens an exciting and novel avenue in the fight against drug resistant infections by successfully utilizing the antimicrobial and antibiofilm activity of low dose FDA approved optically traceable ICG and relatively low cost clinically acceptable iron oxide nanoparticles to enable effective aPDT/aPTT combination, induced via short-duration laser irradiation at a near-infrared wavelength.


Asunto(s)
Verde de Indocianina , Fotoquimioterapia , Antibacterianos/farmacología , Escherichia coli , Láseres de Semiconductores , Nanopartículas Magnéticas de Óxido de Hierro , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Terapia Fototérmica
2.
Opt Lett ; 39(17): 5180-3, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25166104

RESUMEN

We report, for the first time to our knowledge, the demonstration of a graphene supercapacitor as a voltage-controlled saturable absorber for femtosecond pulse generation from a solid-state laser. By applying only a few volts of bias, the Fermi level of the device could be shifted to vary the insertion loss, while maintaining a sufficient level of saturable absorption to initiate mode-locked operation. The graphene supercapacitor was operated at bias voltages of 0.5-1V to generate sub-100 fs pulses at a pulse repetition rate of 4.51 MHz from a multipass-cavity Cr(4+):forsterite laser operating at 1255 nm. The nonlinear optical response of the graphene supercapacitor was further investigated by using pump-probe spectroscopy.

3.
Opt Lett ; 37(17): 3555-7, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22940947

RESUMEN

We report successful energy scaling of a room-temperature femtosecond Cr4+: forsterite laser by using a single-walled carbon nanotube saturable absorber (SWCNT-SA). By incorporating a q-preserving multipass cavity, a repetition rate of 4.51 MHz was realized, and the oscillator produced 121 fs, 10 nJ pulses at 1247 nm, with an average output power of 46 mW. To the best of our knowledge, the peak power of 84 kW is the highest generated to date from a SWCNT-SA mode-locked oscillator. Furthermore, energy scaling of a femtosecond multipass-cavity laser, mode-locked using a SWCNT-SA, is demonstrated for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA