Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1529(1): 3-13, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801367

RESUMEN

The entry of a virus into the host cell always implies the alteration of certain intracellular molecular relationships, some of which may involve the recovery of ancient cellular activities. In this sense, viruses are archaeological tools for identifying unexpressed activities in noninfected cells. Among these, activities that hinder virus propagation may represent cellular defense mechanisms, for example, activities that mutagenize the viral genome such as ADAR-1 or APOBEC activities. Instead, those that facilitate virus propagation can be interpreted as the result of viral adaptation to-or mimicking-cellular structures, enabling the virus to perform anthropomorphic activities, including hijacking, manipulating, and reorganizing cellular factors for their own benefit. The alternative we consider here is that some of these second set of cellular activities were already in the uninfected cell but silenced, under the negative control of the cell or lineage, and that they represent a necessary precondition for viral infection. For example, specifically loading an amino acid at the 3'-end of the mRNA of some plant viruses by aminoacyl-tRNA synthetases has proved essential for virus infection despite this reaction not occurring with cellular mRNAs. Other activities of this type are discussed here, together with the biological context in which they acquire a coherent meaning, that is, genetic latency and molecular conflict.


Asunto(s)
Virus , Humanos
2.
Sci Total Environ ; 903: 166106, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567316

RESUMEN

Large epidemiological studies have shown that traffic noise promotes the development of cardiometabolic diseases. It remains to be established how long these adverse effects of noise may persist in response to a noise-off period. We investigated the effects of acute aircraft noise exposure (mean sound level of 72 dB(A) applied for 4d) on oxidative stress and inflammation mediating vascular dysfunction and increased blood pressure in male C57BL/6 J mice. 1, 2 or 4d of noise cessation after a 4d continuous noise exposure period completely normalized noise-induced endothelial dysfunction of the aorta (measured by acetylcholine-dependent relaxation) already after a 1d noise pause. Vascular oxidative stress and the increased blood pressure were partially corrected, while markers of inflammation (VCAM-1, IL-6 and leukocyte oxidative burst) showed a normalization within 4d of noise cessation. In contrast, endothelial dysfunction, oxidative stress, and inflammation of the cerebral microvessels of noise-exposed mice did not improve at all. These data demonstrate that the recovery from noise-induced damage is more complex than expected demonstrating a complete restoration of large conductance vessel function but persistent endothelial dysfunction of the microcirculation. These findings also imply that longer noise pauses are required to completely reverse noise-induced vascular dysfunction including the resistance vessels.

3.
Eur Cardiol ; 18: e09, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377448

RESUMEN

During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.

4.
Eur J Prev Cardiol ; 30(15): 1554-1568, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37185661

RESUMEN

AIMS: Environmental stressors such as traffic noise represent a global threat, accounting for 1.6 million healthy life years lost annually in Western Europe. Therefore, the noise-associated health side effects must be effectively prevented or mitigated. Non-pharmacological interventions such as physical activity or a balanced healthy diet are effective due to the activation of the adenosine monophosphate-activated protein kinase (α1AMPK). Here, we investigated for the first time in a murine model of aircraft noise-induced vascular dysfunction the potential protective role of α1AMPK activated via exercise, intermittent fasting, and pharmacological treatment. METHODS AND RESULTS: Wild-type (B6.Cg-Tg(Cdh5-cre)7Mlia/J) mice were exposed to aircraft noise [maximum sound pressure level of 85 dB(A), average sound pressure level of 72 dB(A)] for the last 4 days. The α1AMPK was stimulated by different protocols, including 5-aminoimidazole-4-carboxamide riboside application, voluntary exercise, and intermittent fasting. Four days of aircraft noise exposure produced significant endothelial dysfunction in wild-type mice aorta, mesenteric arteries, and retinal arterioles. This was associated with increased vascular oxidative stress and asymmetric dimethylarginine formation. The α1AMPK activation with all three approaches prevented endothelial dysfunction and vascular oxidative stress development, which was supported by RNA sequencing data. Endothelium-specific α1AMPK knockout markedly aggravated noise-induced vascular damage and caused a loss of mitigation effects by exercise or intermittent fasting. CONCLUSION: Our results demonstrate that endothelial-specific α1AMPK activation by pharmacological stimulation, exercise, and intermittent fasting effectively mitigates noise-induced cardiovascular damage. Future population-based studies need to clinically prove the concept of exercise/fasting-mediated mitigation of transportation noise-associated disease.


Traffic noise, e.g. from aircraft, significantly contributes to an increased risk of cardiovascular or metabolic diseases in the general population by brain-dependent stress reactions leading to higher levels of circulating stress hormones and vasoconstrictors, all of which cause hypertension, oxidative stress, and inflammation. With the present experimental studies, we provide for the first time molecular mechanisms responsible for successful noise mitigation: Physical exercise, intermittent fasting, and pharmacological activation of the adenosine monophosphate-activated protein kinase (AMPK), a metabolic master regulator protein, prevent cardiovascular damage caused by noise exposure, such as hypertension, endothelial dysfunction, and reactive oxygen species formation (e.g. free radicals) and inflammation.These beneficial mitigation manoeuvers are secondary to an activation of the endothelial AMPK, thereby mimicking the antidiabetic drug metformin.


Asunto(s)
Endotelio Vascular , Ruido del Transporte , Humanos , Ratones , Animales , Endotelio Vascular/metabolismo , Estrés Oxidativo , Ruido del Transporte/efectos adversos , Ayuno , Aeronaves , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología
5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047426

RESUMEN

Metabolic adaptations are a hallmark of cancer and may be exploited to develop novel diagnostic and therapeutic tools. Only about 50% of the patients who undergo thyroidectomy due to suspicion of thyroid cancer actually have the disease, highlighting the diagnostic limitations of current tools. We explored the possibility of using non-invasive blood tests to accurately diagnose thyroid cancer. We analyzed blood and thyroid tissue samples from two independent cohorts of patients undergoing thyroidectomy at the Hospital Universitario 12 de Octubre (Madrid, Spain). As expected, histological comparisons of thyroid cancer and hyperplasia revealed higher proliferation and apoptotic rates and enhanced vascular alterations in the former. Notably, they also revealed increased levels of membrane-bound phosphorylated AKT, suggestive of enhanced glycolysis, and alterations in mitochondrial sub-cellular distribution. Both characteristics are common metabolic adaptations in primary tumors. These data together with reduced mtDNA copy number and elevated levels of the mitochondrial antioxidant PRX3 in cancer tissue samples suggest the presence of mitochondrial oxidative stress. In plasma, cancer patients showed higher levels of cfDNA and mtDNA. Of note, mtDNA plasma levels inversely correlated with those in the tissue, suggesting that higher death rates were linked to lower mtDNA copy number. In PBMCs, cancer patients showed higher levels of PGC-1α, a positive regulator of mitochondrial function, but this increase was not associated with a corresponding induction of its target genes, suggesting a reduced activity in cancer patients. We also observed a significant difference in the PRDX3/PFKFB3 correlation at the gene expression level, between carcinoma and hyperplasia patients, also indicative of increased systemic metabolic stress in cancer patients. The correlation of mtDNA levels in tissue and PBMCs further stressed the interconnection between systemic and tumor metabolism. Evaluation of the mitochondrial gene ND1 in plasma, PBMCs and tissue samples, suggested that it could be a good biomarker for systemic oxidative metabolism, with ND1/mtDNA ratio positively correlating in PBMCs and tissue samples. In contrast, ND4 evaluation would be informative of tumor development, with ND4/mtDNA ratio specifically altered in the tumor context. Taken together, our data suggest that metabolic dysregulation in thyroid cancer can be monitored accurately in blood samples and might be exploited for the accurate discrimination of cancer from hyperplasia.


Asunto(s)
Mitocondrias , Neoplasias de la Tiroides , Humanos , Hiperplasia/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Glucólisis
6.
Redox Biol ; 59: 102580, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566737

RESUMEN

Worldwide, up to 8.8 million excess deaths/year have been attributed to air pollution, mainly due to the exposure to fine particulate matter (PM). Traffic-related noise is an additional contributor to global mortality and morbidity. Both health risk factors substantially contribute to cardiovascular, metabolic and neuropsychiatric sequelae. Studies on the combined exposure are rare and urgently needed because of frequent co-occurrence of both risk factors in urban and industrial settings. To study the synergistic effects of PM and noise, we used an exposure system equipped with aerosol generator and loud-speakers, where C57BL/6 mice were acutely exposed for 3d to either ambient PM (NIST particles) and/or noise (aircraft landing and take-off events). The combination of both stressors caused endothelial dysfunction, increased blood pressure, oxidative stress and inflammation. An additive impairment of endothelial function was observed in isolated aortic rings and even more pronounced in cerebral and retinal arterioles. The increase in oxidative stress and inflammation markers together with RNA sequencing data indicate that noise particularly affects the brain and PM the lungs. The combination of both stressors has additive adverse effects on the cardiovascular system that are based on PM-induced systemic inflammation and noise-triggered stress hormone signaling. We demonstrate an additive upregulation of ACE-2 in the lung, suggesting that there may be an increased vulnerability to COVID-19 infection. The data warrant further mechanistic studies to characterize the propagation of primary target tissue damage (lung, brain) to remote organs such as aorta and heart by combined noise and PM exposure.


Asunto(s)
COVID-19 , Sistema Cardiovascular , Ratones , Animales , Material Particulado/efectos adversos , Ratones Endogámicos C57BL , Inflamación/inducido químicamente , Estrés Oxidativo , Aeronaves
7.
Free Radic Biol Med ; 187: 72-91, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613665

RESUMEN

Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.


Asunto(s)
Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Inflamación/inducido químicamente , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Rayos Ultravioleta
8.
Environ Int ; 165: 107306, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635962

RESUMEN

The importance of noise exposure as a major environmental determinant of public health is being increasingly recognized. While in recent years a large body evidence has emerged linking environmental noise exposure mainly to cardiovascular disease, much less is known concerning the adverse health effects of noise on the brain and associated neuropsychiatric outcomes. Despite being a relatively new area of investigation, indeed, mounting research and conclusive evidence demonstrate that exposure to noise, primarily from traffic sources, may affect the central nervous system and brain, thereby contributing to an increased risk of neuropsychiatric disorders such as stroke, dementia and cognitive decline, neurodevelopmental disorders, depression, and anxiety disorder. On a mechanistic level, a significant number of studies suggest the involvement of reactive oxygen species/oxidative stress and inflammatory pathways, among others, to fundamentally drive the adverse brain health effects of noise exposure. This in-depth review on the cerebral consequences of environmental noise exposure aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting adequate mitigation strategies and preventive measures to lower the societal consequences of unhealthy environments.


Asunto(s)
Enfermedades Cardiovasculares , Disfunción Cognitiva , Accidente Cerebrovascular , Animales , Enfermedades Cardiovasculares/etiología , Exposición a Riesgos Ambientales/efectos adversos , Ruido/efectos adversos
9.
Front Mol Biosci ; 8: 784910, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869603

RESUMEN

Environmental exposures represent a significant health hazard, which cumulatively may be responsible for up to 2/3 of all chronic non-communicable disease and associated mortality (Global Burden of Disease Study and The Lancet Commission on Pollution and Health), which has given rise to a new concept of the exposome: the sum of environmental factors in every individual's experience. Noise is part of the exposome and is increasingly being investigated as a health risk factor impacting neurological, cardiometabolic, endocrine, and immune health. Beyond the well-characterized effects of high-intensity noise on cochlear damage, noise is relatively well-studied in the cardiovascular field, where evidence is emerging from both human and translational experiments that noise from traffic-related sources could represent a risk factor for hypertension, ischemic heart disease, diabetes, and atherosclerosis. In the present review, we comprehensively discuss the current state of knowledge in the field of noise research. We give a brief survey of the literature documenting experiments in noise exposure in both humans and animals with a focus on cardiovascular disease. We also discuss the mechanisms that have been uncovered in recent years that describe how exposure to noise affects physiological homeostasis, leading to aberrant redox signaling resulting in metabolic and immune consequences, both of which have considerable impact on cardiovascular health. Additionally, we discuss the molecular pathways of redox involvement in the stress responses to noise and how they manifest in disruptions of the circadian rhythm, inflammatory signaling, gut microbiome composition, epigenetic landscape and vessel function.

10.
Redox Biol ; 46: 102063, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34274810

RESUMEN

Epidemiological studies showed that traffic noise has a dose-dependent association with increased cardiovascular morbidity and mortality. Whether microvascular dysfunction contributes significantly to the cardiovascular health effects by noise exposure remains to be established. The connection of inflammation and immune cell interaction with microvascular damage and functional impairment is also not well characterized. Male C57BL/6J mice or gp91phox-/y mice with genetic deletion of the phagocytic NADPH oxidase catalytic subunit (gp91phox or NOX-2) were used at the age of 8 weeks, randomly instrumented with dorsal skinfold chambers and exposed or not exposed to aircraft noise for 4 days. Proteomic analysis (using mass spectrometry) revealed a pro-inflammatory phenotype induced by noise exposure that was less pronounced in noise-exposed gp91phox-/y mice. Using in vivo fluorescence microscopy, we found a higher number of adhesive leukocytes in noise-exposed wild type mice. Dorsal microvascular diameter (by trend), red blood cell velocity, and segmental blood flow were also decreased by noise exposure indicating microvascular constriction. All adverse effects on functional parameters were normalized or improved at least by trend in noise-exposed gp91phox-/y mice. Noise exposure also induced endothelial dysfunction in cerebral microvessels, which was associated with higher oxidative stress burden and inflammation, as measured using video microscopy. We here establish a link between a pro-inflammatory phenotype of plasma, activation of circulating leukocytes and microvascular dysfunction in mice exposed to aircraft noise. The phagocytic NADPH oxidase was identified as a central player in the underlying pathophysiological mechanisms.


Asunto(s)
Leucocitos , Proteómica , Aeronaves , Animales , Leucocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Estrés Oxidativo
11.
Nitric Oxide ; 113-114: 57-69, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091009

RESUMEN

Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.


Asunto(s)
Antihipertensivos/farmacología , Hipertensión/tratamiento farmacológico , Nitratos/farmacología , Nitritos/farmacología , Administración Oral , Angiotensina II/administración & dosificación , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/sangre , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/administración & dosificación , Nitritos/sangre , Estrés Oxidativo/efectos de los fármacos
12.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33929610

RESUMEN

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Asunto(s)
Arterias/enzimología , Encéfalo/enzimología , Encefalitis/prevención & control , Microglía/enzimología , Muramidasa/deficiencia , Células Mieloides/enzimología , Ruido del Transporte/efectos adversos , Enfermedades Vasculares Periféricas/prevención & control , Aeronaves , Animales , Arterias/fisiopatología , Encéfalo/patología , Modelos Animales de Enfermedad , Encefalitis/enzimología , Encefalitis/etiología , Encefalitis/patología , Eliminación de Gen , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Muramidasa/genética , Estrés Oxidativo , Enfermedades Vasculares Periféricas/enzimología , Enfermedades Vasculares Periféricas/etiología , Enfermedades Vasculares Periféricas/fisiopatología , Especies Reactivas de Oxígeno/metabolismo
13.
Antioxidants (Basel) ; 10(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921821

RESUMEN

Vascular oxidative stress, inflammation, and subsequent endothelial dysfunction are consequences of traditional cardiovascular risk factors, all of which contribute to cardiovascular disease. Environmental stressors, such as traffic noise and air pollution, may also facilitate the development and progression of cardiovascular and metabolic diseases. In our previous studies, we investigated the influence of aircraft noise exposure on molecular mechanisms, identifying oxidative stress and inflammation as central players in mediating vascular function. The present study investigates the role of heme oxygenase-1 (HO-1) as an antioxidant response preventing vascular consequences following exposure to aircraft noise. C57BL/6J mice were treated with the HO-1 inducer hemin (25 mg/kg i.p.) or the NRF2 activator dimethyl fumarate (DMF, 20 mg/kg p.o.). During therapy, the animals were exposed to noise at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A). Our data showed a marked protective effect of both treatments on animals exposed to noise for 4 days by normalization of arterial hypertension and vascular dysfunction in the noise-exposed groups. We observed a partial normalization of noise-triggered oxidative stress and inflammation by hemin and DMF therapy, which was associated with HO-1 induction. The present study identifies possible new targets for the mitigation of the adverse health effects caused by environmental noise exposure. Since natural dietary constituents can achieve HO-1 and NRF2 induction, these pathways represent promising targets for preventive measures.

14.
Front Mol Biosci ; 8: 814921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174211

RESUMEN

Transportation noise is recognized as an important cardiovascular risk factor. Key mechanisms are noise-triggered vascular inflammation and oxidative stress with subsequent endothelial dysfunction. Here, we test for adaptation or tolerance mechanisms in mice in response to chronic noise exposure. C57BL/6J mice were exposed to aircraft noise for 0, 4, 7, 14 and 28d at a mean sound pressure level of 72 dB(A) and peak levels of 85 dB(A). Chronic aircraft noise exposure up to 28d caused persistent endothelial dysfunction and elevation of blood pressure. Likewise, reactive oxygen species (ROS) formation as determined by dihydroethidium (DHE) staining and HPLC-based measurement of superoxide formation in the aorta/heart/brain was time-dependently increased by noise. Oxidative burst in the whole blood showed a maximum at 4d or 7d of noise exposure. Increased superoxide formation in the brain was mirrored by a downregulation of neuronal nitric oxide synthase (Nos3) and transcription factor Foxo3 genes, whereas Vcam1 mRNA, a marker for inflammation was upregulated in all noise exposure groups. Induction of a pronounced hearing loss in the mice was excluded by auditory brainstem response audiometry. Endothelial dysfunction and inflammation were present during the entire 28d of aircraft noise exposure. ROS formation gradually increases with ongoing exposure without significant adaptation or tolerance in mice in response to chronic noise stress at moderate levels. These data further illustrate health side effects of long-term noise exposure and further strengthen a consequent implementation of the WHO noise guidelines in order to prevent the development of noise-related future cardiovascular disease.

15.
Eur Heart J ; 41(26): 2472-2483, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-31715629

RESUMEN

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Asunto(s)
Encéfalo , Cigarrillo Electrónico a Vapor/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina , NADPH Oxidasa 2/genética , Estrés Oxidativo , Animales , Encéfalo/metabolismo , Ratones
16.
Oxid Med Cell Longev ; 2019: 7092151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341533

RESUMEN

Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Inflamación/complicaciones , Estrés Oxidativo/genética , Enfermedades Cardiovasculares/patología , Humanos
17.
Biofactors ; 45(4): 495-506, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30937979

RESUMEN

Environmental noise is a well-recognized health risk and part of the external exposome-the World Health Organization estimates that 1 million healthy life years are lost annually in Western Europe alone due to noise-related complications, including increased incidence of hypertension, heart failure, myocardial infarction, and stroke. Previous data suggest that noise works through two paired pathways in a proposed reaction model for noise exposure. As a nonspecific stressor, chronic low-level noise exposure can cause a disruption of sleep and communication leading to annoyance and subsequent sympathetic and endocrine stress responses leading to increased blood pressure, heart rate, stress hormone levels, and in particular more oxidative stress, being responsible for vascular dysfunction and representing changes of the internal exposome. Chronic stress generates cardiovascular risk factors on its own such as increased blood pressure, blood viscosity, blood glucose, and activation of blood coagulation. To this end, persistent chronic noise exposure increases cardiometabolic diseases, including arterial hypertension, coronary artery disease, arrhythmia, heart failure, diabetes mellitus type 2, and stroke. The present review discusses the mechanisms of the nonauditory noise-induced cardiovascular and metabolic consequences, focusing on mental stress signaling pathways, activation of the hypothalamic-pituitary-adrenocortical axis and sympathetic nervous system, the association of these activations with inflammation, and the subsequent onset of oxidative stress and vascular dysfunction. © 2019 BioFactors, 45 (4):495-506, 2019.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Enfermedad de la Arteria Coronaria/inducido químicamente , Diabetes Mellitus Tipo 2/inducido químicamente , Contaminantes Ambientales/efectos adversos , Insuficiencia Cardíaca/inducido químicamente , Hipertensión/inducido químicamente , Accidente Cerebrovascular/inducido químicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Coagulación Sanguínea/efectos de los fármacos , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Viscosidad Sanguínea/efectos de los fármacos , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Exposoma , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...