Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 372(6537): 63-68, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33795451

RESUMEN

The end-Cretaceous event was catastrophic for terrestrial communities worldwide, yet its long-lasting effect on tropical forests remains largely unknown. We quantified plant extinction and ecological change in tropical forests resulting from the end-Cretaceous event using fossil pollen (>50,000 occurrences) and leaves (>6000 specimens) from localities in Colombia. Late Cretaceous (Maastrichtian) rainforests were characterized by an open canopy and diverse plant-insect interactions. Plant diversity declined by 45% at the Cretaceous-Paleogene boundary and did not recover for ~6 million years. Paleocene forests resembled modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by angiosperms. The end-Cretaceous event triggered a long interval of low plant diversity in the Neotropics and the evolutionary assembly of today's most diverse terrestrial ecosystem.

2.
Data Brief ; 25: 104398, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31516931

RESUMEN

This contribution contains a GPlates digital reconstruction of the northern Andes and southern Caribbean margin for the last 90 Ma. It is built using different strain datasets fully described in "Continental Margin Response to Multiple Arc-Continent Collisions: the Northern Andes-Caribbean Margin" [1]. Two digital reconstructions are included here: one is a rigid block reconstruction, and the other is a continuously closing polygon reconstruction digitized every one -million years. We placed the South and North American plates at the root of the reconstruction tree, so that the Andean blocks move with respect to the former, and the Caribbean Plate, and related intra-oceanic arcs with respect to the latter. These reconstructions can be used as templates to place in palinspastic space any dataset that can be represented by lines or points.

3.
Sci Adv ; 3(5): e1601693, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508052

RESUMEN

There is a considerable controversy about whether western Amazonia was ever covered by marine waters during the Miocene [23 to 5 Ma (million years ago)]. We investigated the possible occurrence of Miocene marine incursions in the Llanos and Amazonas/Solimões basins, using sedimentological and palynological data from two sediment cores taken in eastern Colombia and northwestern Brazil together with seismic information. We observed two distinct marine intervals in the Llanos Basin, an early Miocene that lasted ~0.9 My (million years) (18.1 to 17.2 Ma) and a middle Miocene that lasted ~3.7 My (16.1 to 12.4 Ma). These two marine intervals are also seen in Amazonas/Solimões Basin (northwestern Amazonia) but were much shorter in duration, ~0.2 My (18.0 to 17.8 Ma) and ~0.4 My (14.1 to 13.7 Ma), respectively. Our results indicate that shallow marine waters covered the region at least twice during the Miocene, but the events were short-lived, rather than a continuous full-marine occupancy of Amazonian landscape over millions of years.

4.
Science ; 330(6006): 957-61, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21071667

RESUMEN

Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.


Asunto(s)
Ecosistema , Calentamiento Global , Plantas , Árboles , Clima Tropical , Atmósfera , Biodiversidad , Dióxido de Carbono , Colombia , Extinción Biológica , Magnoliopsida , Polen , Esporas , Temperatura , Tiempo , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA