Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Digit Health ; 10: 20552076241249661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698834

RESUMEN

Artificial intelligence is steadily permeating various sectors, including healthcare. This research specifically addresses lung cancer, the world's deadliest disease with the highest mortality rate. Two primary factors contribute to its onset: genetic predisposition and environmental factors, such as smoking and exposure to pollutants. Recognizing the need for more effective diagnosis techniques, our study embarked on devising a machine learning strategy tailored to boost precision in lung cancer detection. Our aim was to devise a diagnostic method that is both less invasive and cost-effective. To this end, we proposed four methods, benchmarking them against prevalent techniques using a universally recognized dataset from Kaggle. Among our methods, one emerged as particularly promising, outperforming the competition in accuracy, precision and sensitivity. This method utilized hyperparameter tuning, focusing on the Gamma and C parameters, which were set at a value of 10. These parameters influence kernel width and regularization strength, respectively. As a result, we achieved an accuracy of 99.16%, a precision of 98% and a sensitivity rate of 100%. In conclusion, our enhanced prediction mechanism has proven to surpass traditional and contemporary strategies in lung cancer detection.

2.
Diagnostics (Basel) ; 13(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761234

RESUMEN

Arrhythmia is a cardiac condition characterized by an irregular heart rhythm that hinders the proper circulation of blood, posing a severe risk to individuals' lives. Globally, arrhythmias are recognized as a significant health concern, accounting for nearly 12 percent of all deaths. As a result, there has been a growing focus on utilizing artificial intelligence for the detection and classification of abnormal heartbeats. In recent years, self-operated heartbeat detection research has gained popularity due to its cost-effectiveness and potential for expediting therapy for individuals at risk of arrhythmias. However, building an efficient automatic heartbeat monitoring approach for arrhythmia identification and classification comes with several significant challenges. These challenges include addressing issues related to data quality, determining the range for heart rate segmentation, managing data imbalance difficulties, handling intra- and inter-patient variations, distinguishing supraventricular irregular heartbeats from regular heartbeats, and ensuring model interpretability. In this study, we propose the Reseek-Arrhythmia model, which leverages deep learning techniques to automatically detect and classify heart arrhythmia diseases. The model combines different convolutional blocks and identity blocks, along with essential components such as convolution layers, batch normalization layers, and activation layers. To train and evaluate the model, we utilized the MIT-BIH and PTB datasets. Remarkably, the proposed model achieves outstanding performance with an accuracy of 99.35% and 93.50% and an acceptable loss of 0.688 and 0.2564, respectively.

4.
J Med Imaging Radiat Oncol ; 66(8): 1035-1043, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35224858

RESUMEN

INTRODUCTION: The primary aim was to develop convolutional neural network (CNN)-based artificial intelligence (AI) models for pneumothorax classification and segmentation for automated chest X-ray (CXR) triaging. A secondary aim was to perform interpretability analysis on the best-performing candidate model to determine whether the model's predictions were susceptible to bias or confounding. METHOD: A CANDID-PTX dataset, that included 19,237 anonymized and manually labelled CXRs, was used for training and testing candidate models for pneumothorax classification and segmentation. Evaluation metrics for classification performance included Area under the receiver operating characteristic curve (AUC-ROC), sensitivity and specificity, whilst segmentation performance was measured using mean Dice and true-positive (TP)-Dice coefficients. Interpretability analysis was performed using Grad-CAM heatmaps. Finally, the best-performing model was implemented for a triage simulation. RESULTS: The best-performing model demonstrated a sensitivity of 0.93, specificity of 0.95 and AUC-ROC of 0.94 in identifying the presence of pneumothorax. A TP-Dice coefficient of 0.69 is given for segmentation performance. In triage simulation, mean reporting delay for pneumothorax-containing CXRs is reduced from 9.8 ± 2 days to 1.0 ± 0.5 days (P-value < 0.001 at 5% significance level), with sensitivity 0.95 and specificity of 0.95 given for the classification performance. Finally, interpretability analysis demonstrated models employed logic understandable to radiologists, with negligible bias or confounding in predictions. CONCLUSION: AI models can automate pneumothorax detection with clinically acceptable accuracy, and potentially reduce reporting delays for urgent findings when implemented as triaging tools.


Asunto(s)
Aprendizaje Profundo , Neumotórax , Humanos , Neumotórax/diagnóstico por imagen , Radiografía Torácica , Inteligencia Artificial , Triaje , Rayos X , Nueva Zelanda , Algoritmos
5.
PLoS One ; 16(10): e0256971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34606503

RESUMEN

Studying the progress and trend of the novel coronavirus pneumonia (COVID-19) transmission mode will help effectively curb its spread. Some commonly used infectious disease prediction models are introduced. The hybrid model is proposed, which overcomes the disadvantages of the logistic model's inability to predict the number of confirmed diagnoses and the drawbacks of too many tuning parameters of the SEIR (Susceptible, Exposed, Infectious, Recovered) model. The realization and superiority of the prediction of the proposed model are proven through experiments. At the same time, the influence of different initial values of the parameters that need to be debugged on the hybrid model is further studied, and the mean error is used to quantify the prediction effect. By forecasting epidemic size and peak time and simulating the effects of public health interventions, this paper aims to clarify the transmission dynamics of COVID-19 and recommend operation suggestions to slow down the epidemic. It is suggested that the quick detection of cases, sufficient implementation of quarantine and public self-protection behaviours are critical to slow down the epidemic.


Asunto(s)
COVID-19/patología , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Humanos , Modelos Logísticos , Modelos Teóricos , Cuarentena , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...