Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 92(3): 967-981, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38297511

RESUMEN

PURPOSE: Hyperpolarized xenon MRI suffers from heterogeneous coil bias and magnetization decay that obscure pulmonary abnormalities. Non-physiological signal variability can be mitigated by measuring and mapping the nominal flip angle, and by rescaling the images to correct for signal bias and decay. While flip angle maps can be calculated from sequentially acquired images, scan time and breath-hold duration are doubled. Here, we exploit the low-frequency oversampling of 2D-spiral and keyhole reconstruction to measure flip angle maps from a single acquisition. METHODS: Flip angle maps were calculated from two images generated from a single dataset using keyhole reconstructions and a Bloch-equation-based model suitable for hyperpolarized substances. Artifacts resulting from acquisition and reconstruction schemes (e.g., keyhole reconstruction radius, slice-selection profile, spiral-ordering, and oversampling) were assessed using point-spread functions. Simulated flip angle maps generated using keyhole reconstruction were compared against the paired-image approach using RMS error (RMSE). Finally, feasibility was demonstrated for in vivo xenon ventilation imaging. RESULTS: Simulations demonstrated accurate flip angle maps and B1-inhomogeneity correction can be generated with only 1.25-fold central-oversampling and keyhole reconstruction radius = 5% (RMSE = 0.460°). These settings also generated accurate flip angle maps in a healthy control (RSME = 0.337°) and a person with cystic fibrosis (RMSE = 0.404°) in as little as 3.3 s. CONCLUSION: Regional lung ventilation images with reduced impact of B1-inhomogeneity can be acquired rapidly by combining 2D-spiral acquisition, Bloch-equation-based modeling, and keyhole reconstruction. This approach will be especially useful for breath-hold studies where short scan durations are necessary, such as dynamic imaging and applications in children or people with severely compromised respiratory function.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Pulmón , Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón/química , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Simulación por Computador , Algoritmos , Masculino , Femenino , Fantasmas de Imagen , Adulto , Contencion de la Respiración , Fibrosis Quística/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA