Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471149

RESUMEN

Cohesin and CTCF are major drivers of 3D genome organization, but their role in neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin was required for full expression of a subset of secondary response genes characterized by long-range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. Our data demonstrate that key genes required for the maturation and activation of primary cortical neurons depend on cohesin for their full expression, and that the degree to which these genes rely on cohesin scales with the genomic distance traversed by their chromatin contacts.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Expresión Génica , Ratones , Neuronas/metabolismo , Cohesinas
2.
Nat Commun ; 13(1): 55, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013139

RESUMEN

Although the synaptic alterations associated with the stress-related mood disorder major depression has been well-documented, the underlying transcriptional mechanisms remain poorly understood. Here, we perform complementary bulk nuclei- and single-nucleus transcriptome profiling and map locus-specific chromatin interactions in mouse neocortex to identify the cell type-specific transcriptional changes associated with stress-induced behavioral maladaptation. We find that cortical excitatory neurons, layer 2/3 neurons in particular, are vulnerable to chronic stress and acquire signatures of gene transcription and chromatin structure associated with reduced neuronal activity and expression of Yin Yang 1 (YY1). Selective ablation of YY1 in cortical excitatory neurons enhances stress sensitivity in both male and female mice and alters the expression of stress-associated genes following an abbreviated stress exposure. These findings demonstrate how chronic stress impacts transcription in cortical excitatory neurons and identify YY1 as a regulator of stress-induced maladaptive behavior in mice.


Asunto(s)
Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Animales , Conducta Animal , Cromatina/metabolismo , Epigenómica , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Fisiológico
3.
4.
Nat Neurosci ; 23(6): 707-717, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451484

RESUMEN

Neuronal activation induces rapid transcription of immediate early genes (IEGs) and longer-term chromatin remodeling around secondary response genes (SRGs). Here, we use high-resolution chromosome-conformation-capture carbon-copy sequencing (5C-seq) to elucidate the extent to which long-range chromatin loops are altered during short- and long-term changes in neural activity. We find that more than 10% of loops surrounding select IEGs, SRGs, and synaptic genes are induced de novo during cortical neuron activation. IEGs Fos and Arc connect to activity-dependent enhancers via singular short-range loops that form within 20 min after stimulation, prior to peak messenger RNA levels. By contrast, the SRG Bdnf engages in both pre-existing and activity-inducible loops that form within 1-6 h. We also show that common single-nucleotide variants that are associated with autism and schizophrenia are colocalized with distinct classes of activity-dependent, looped enhancers. Our data link architectural complexity to transcriptional kinetics and reveal the rapid timescale by which higher-order chromatin architecture reconfigures during neuronal stimulation.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Expresión Génica/fisiología , Genoma/genética , Neuronas/fisiología , Animales , Bicuculina/farmacología , Factor Neurotrófico Derivado del Encéfalo/fisiología , Ensamble y Desensamble de Cromatina/genética , Proteínas del Citoesqueleto/fisiología , Genoma/efectos de los fármacos , Humanos , Ratones , Proteínas del Tejido Nervioso/fisiología , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/fisiología , Tetrodotoxina/farmacología , Factores de Tiempo
5.
Nat Genet ; 52(1): 8-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31925403

RESUMEN

Genomes across a wide range of eukaryotic organisms fold into higher-order chromatin domains. Topologically associating domains (TADs) were originally discovered empirically in low-resolution Hi-C heat maps representing ensemble average interaction frequencies from millions of cells. Here, we discuss recent advances in high-resolution Hi-C, single-cell imaging experiments, and functional genetic studies, which provide an increasingly complex view of the genome's hierarchical structure-function relationship. On the basis of these new findings, we update the definitions of distinct classes of chromatin domains according to emerging knowledge of their structural, mechanistic and functional properties.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica , Genoma , Transcripción Genética , Animales , Compartimento Celular , Humanos , Modelos Biológicos
6.
Nat Methods ; 16(7): 633-639, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31235883

RESUMEN

Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.


Asunto(s)
Regulación de la Expresión Génica , Ingeniería de Proteínas , Animales , Proteínas Portadoras/genética , Células Cultivadas , Proteínas de Unión al ADN , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Luz , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/genética
7.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173918

RESUMEN

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Asunto(s)
Cromatina/genética , Repeticiones de Microsatélite/fisiología , Expansión de Repetición de Trinucleótido/fisiología , Adulto , Encéfalo/citología , Encéfalo/patología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/fisiología , Línea Celular , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Islas de CpG/genética , Islas de CpG/fisiología , ADN/genética , Enfermedad/etiología , Enfermedad/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Expansión de Repetición de Trinucleótido/genética
8.
Methods ; 142: 39-46, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29772275

RESUMEN

Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs, and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C can generate genome-wide maps of looping interactions but is intractable for high-throughput comparison of loops across multiple conditions due to the enormous number of reads (>6 Billion) required per library. Here, we describe 5C-ID, a new version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a double alternating primer design. We demonstrate that 5C-ID produces higher-resolution 3D genome folding maps with reduced spatial noise using markedly lower cell numbers than canonical 5C. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas/genética , Cartilla de ADN/genética , Genoma/genética , Conformación de Ácido Nucleico , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Cromosomas/química , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
9.
Genome Res ; 27(7): 1139-1152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536180

RESUMEN

CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D reconfiguration of fine-scale chromatin folding during early neural lineage commitment. Unexpectedly, we observe a sharp decrease in CTCF occupancy during the transition from naïve/primed pluripotency to multipotent primary neural progenitor cells (NPCs). Many pluripotency gene-enhancer interactions are anchored by CTCF, and its occupancy is lost in parallel with loop decommissioning during differentiation. Conversely, CTCF binding sites in NPCs are largely preexisting in pluripotent stem cells. Only a small number of CTCF sites arise de novo in NPCs. We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping interactions between NPC-specific genes and enhancers. Putative NPC-specific enhancers exhibit strong YY1 signal when engaged in 3D contacts and negligible YY1 signal when not in loops. Moreover, siRNA knockdown of Yy1 specifically disrupts interactions between key NPC enhancers and their target genes. YY1-mediated interactions between NPC regulatory elements are often nested within constitutive loops anchored by CTCF. Together, our results support a model in which YY1 acts as an architectural protein to connect developmentally regulated looping interactions; the location of YY1-mediated interactions may be demarcated in development by a preexisting topological framework created by constitutive CTCF-mediated interactions.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/metabolismo , Factor de Transcripción YY1/metabolismo , Línea Celular , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Células Madre Embrionarias Humanas/citología , Humanos , Células-Madre Neurales/citología
10.
Wiley Interdiscip Rev Syst Biol Med ; 8(4): 286-99, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27265842

RESUMEN

CRISPR/Cas9 genome editing studies have recently shed new light into the causal link between the linear DNA sequence and 3-D chromatin architecture. Here we describe current models for the folding of genomes into a nested hierarchy of higher-order structures and discuss new insights into the organizing principles governing genome folding at each length scale. WIREs Syst Biol Med 2016, 8:286-299. doi: 10.1002/wsbm.1338 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Factor de Unión a CCCTC , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , Humanos , Conformación de Ácido Nucleico , Proteínas Represoras/metabolismo
11.
Cell Stem Cell ; 18(5): 611-24, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152443

RESUMEN

Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression.


Asunto(s)
Reprogramación Celular/genética , Genoma , Conformación de Ácido Nucleico , Animales , Factor de Unión a CCCTC , Linaje de la Célula/genética , Cromatina/química , Células Clonales , Elementos de Facilitación Genéticos/genética , Células Madre Pluripotentes Inducidas/citología , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo
12.
Exp Neurol ; 261: 217-29, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24907400

RESUMEN

Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10µM), or large inclusions (≥10µM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS.


Asunto(s)
Estrés Oxidativo/genética , Periferinas/genética , Agregación Patológica de Proteínas/genética , Isoformas de Proteínas/genética , Carcinoma/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/farmacología , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Periferinas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/metabolismo , Factores de Tiempo , Transfección , Ubiquitina/metabolismo , Vimentina/metabolismo
13.
Neurosci Lett ; 576: 73-8, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24882721

RESUMEN

Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.


Asunto(s)
Adenoviridae/genética , Encéfalo/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Sinapsinas/genética , Transgenes , Animales , Animales Recién Nacidos , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/genética , Humanos , Inyecciones Intraventriculares , Ratones , Regiones Promotoras Genéticas , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...