Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol ; 82(8): 4169-74, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18256154

RESUMEN

In common with all nonenveloped viruses, the mechanism of picornavirus membrane penetration during cell entry is poorly understood. The small, myristylated capsid protein VP4 has been implicated in this process. Here we show that recombinant VP4 of human rhinovirus 16 has the ability to associate with and induce membrane permeability in otherwise intact liposomes. This provides further evidence that VP4 plays a key role in picornavirus cell entry.


Asunto(s)
Proteínas de la Cápside/metabolismo , Membranas/metabolismo , Rhinovirus/fisiología , Internalización del Virus , Humanos , Liposomas/metabolismo , Permeabilidad , Unión Proteica , Proteínas Recombinantes/metabolismo
2.
Biochemistry ; 44(1): 294-302, 2005 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-15628871

RESUMEN

Dimerization of retroviral genomic RNA is essential for efficient viral replication and is mediated by structural interactions between identical RNA motifs in the viral leader region. We have visualized, by electron microscopy, RNA dimers formed from the leader region of the prototype lentivirus, maedi visna virus. Characterization by in vitro assays of the domains responsible for this interaction has identified a 20 nucleotide sequence that functions as the core dimerization initiation site. This region is predicted to form a GACG tetraloop and therefore differs significantly from the kissing loop palindromes utilized to initiate dimerization in primate lentiviruses. The motif is strongly conserved across the ovine and caprine lentiviruses, implying a critical functional role. Furthermore, the proposed GACG tetraloop exhibits marked structural homology with similar structural motifs present in the leader regions of the alpha- and gamma-retroviruses, and the maedi visna virus dimer linkage region is capable of forming heterodimeric species with the Moloney murine leukemia virus Psi domain. This may be indicative of commonality of origin of the two viruses or convergent evolution.


Asunto(s)
ARN Viral/genética , Virus Visna-Maedi/genética , Animales , Secuencia de Bases , Cartilla de ADN , Dimerización , Cabras , Lentivirus/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Viral/química , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Ovinos , Transcripción Genética , Replicación Viral , Virus Visna-Maedi/fisiología
3.
J Virol ; 77(11): 6574-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12743317

RESUMEN

An increasing number of viruses have been shown to initiate protein synthesis by a cap-independent mechanism involving internal ribosome entry sites (IRESs). Predictions of the folding patterns of these RNA motifs have been based primarily on sequence and biochemical analyses. Biophysical confirmation of the models has been achieved only for the IRES of hepatitis C virus (HCV), which adopts an open structure consisting of two major stems. We have conducted an extensive comparison of flavivirus and picornavirus IRES elements by negative stain transmission electron microscopy. All of the flavivirus IRESs we examined (those of GB virus-B, GB virus-C, and classical swine fever virus) fold to give a structure similar to that of the HCV IRES, as does an IRES recently found on mRNA encoded by human herpesvirus 8. The larger picornavirus IRESs (those of foot-and-mouth disease virus, rhinovirus, encephalomyocarditis virus, and hepatitis A virus) are morphologically similar, comprising a backbone with two protruding stems, and distinct from the flavivirus IRESs.


Asunto(s)
Flavivirus/química , Picornaviridae/química , Ribosomas/metabolismo , Animales , Flavivirus/genética , Flavivirus/metabolismo , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Microscopía Electrónica , Coloración Negativa , Conformación de Ácido Nucleico , Picornaviridae/genética , Picornaviridae/metabolismo , Biosíntesis de Proteínas , ARN Viral/química
4.
FEBS Lett ; 535(1-3): 34-8, 2003 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-12560074

RESUMEN

Hepatitis C virus (HCV) cannot be grown in vitro, making biochemical identification of new drug targets especially important. HCV p7 is a small hydrophobic protein of unknown function, yet necessary for particle infectivity in related viruses [Harada, T. et al., (2000) J. Virol. 74, 9498-9506]. We show that p7 can be cross-linked in vivo as hexamers. Escherichia coli expressed p7 fusion proteins also form hexamers in vitro. These and HIS-tagged p7 function as calcium ion channels in black lipid membranes. This activity is abrogated by Amantadine, a compound that inhibits ion channels of influenza [Hay, A.J. et al. (1985) EMBO J. 4, 3021-3024; Duff, K.C. and Ashley, R.H. (1992) Virology 190, 485-489] and has recently been shown to be active in combination with current HCV therapies.


Asunto(s)
Amantadina/farmacología , Antivirales/farmacología , Canales Iónicos/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Carcinoma Hepatocelular/metabolismo , Humanos , Canales Iónicos/química , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/química , Membranas Artificiales , Microscopía Electrónica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Células Tumorales Cultivadas , Proteínas Virales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA