RESUMEN
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder that is generally inherited in an autosomal recessive fashion. However, in some families, trans mutant alleles interact with the primary causal locus to modulate the penetrance and/or the expressivity of the phenotype. CCDC28B (MGC1203) was identified as a second site modifier of BBS encoding a protein of unknown function. Here we report the first functional characterization of this protein and show it affects ciliogenesis both in cultured cells and in vivo in zebrafish. Consistent with this biological role, our in silico analysis shows that the presence of CCDC28B homologous sequences is restricted to ciliated metazoa. Depletion of Ccdc28b in zebrafish results in defective ciliogenesis and consequently causes a number of phenotypes that are characteristic of BBS and other ciliopathy mutants including hydrocephalus, left-right axis determination defects and renal function impairment. Thus, this work reports CCDC28B as a novel protein involved in the process of ciliogenesis whilst providing functional insight into the cellular basis of its modifier effect in BBS patients.