Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107942, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37790275

RESUMEN

Staphylococcus aureus is a leading human pathogen that frequently causes relapsing infections. The failure of antibiotics to eradicate infection contributes to infection relapse. Host-pathogen interactions have a substantial impact on antibiotic susceptibility and the formation of antibiotic tolerant cells. In this study, we interrogate how a major S. aureus virulence factor, α-toxin, interacts with macrophages to alter the microenvironment of the pathogen, thereby influencing its susceptibility to antibiotics. We find α-toxin-mediated activation of the NLRP3 inflammasome induces antibiotic tolerance. Induction of tolerance is driven by increased glycolysis in the host cells, resulting in glucose limitation and ATP depletion in S. aureus. Additionally, inhibition of NLRP3 activation improves antibiotic efficacy in vitro and in vivo, suggesting that this strategy has potential as a host-directed therapeutic to improve outcomes. Our findings identify interactions between S. aureus and the host that result in metabolic crosstalk that can determine the outcome of antimicrobial therapy.

2.
Elife ; 122023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36876902

RESUMEN

Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.


Asunto(s)
Infecciones por Bacterias Grampositivas , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Vancomicina/farmacología , Ácidos Grasos , Infecciones por Bacterias Grampositivas/microbiología , Pruebas de Sensibilidad Microbiana
3.
Microbiol Spectr ; 10(3): e0085822, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35575507

RESUMEN

Interactions between Staphylococcus aureus and the host immune system can have significant impacts on antibiotic efficacy, suggesting that targeting and modulating the immune response to S. aureus infection may improve antibiotic efficacy and improve infection outcome. As we've previously shown, high levels of reactive oxygen species (ROS), associated with an M1-like proinflammatory macrophage response, potently induce antibiotic tolerance in S. aureus. Although the proinflammatory immune response is critical for initial control of pathogen burden, recent studies demonstrate that modulation of the macrophage response to an anti-inflammatory, or M2-like, response facilitates resolution of established S. aureus skin and soft tissue infections, arthritis, and bacteremia. Here, we evaluated the impact of host-directed immunosuppressive chemotherapeutics and anti-inflammatory agents on antibiotic efficacy against S. aureus. IMPORTANCE Staphylococcus aureus is the leading cause of hospital-acquired infections in the United States with high rates of antibiotic treatment failure. Macrophages represent an important intracellular niche in experimental models of S. aureus bacteremia. Although a proinflammatory macrophage response is critical for controlling infection, previous studies have identified an antagonistic relationship between antibiotic treatment and the proinflammatory macrophage response. Reactive oxygen species, produced by macrophages during respiratory burst, coerce S. aureus into an antibiotic tolerant state, leading to poor treatment outcome. Here, we aimed to determine the potential of host-directed immunomodulators that reduce the production of reactive oxygen species to improve antibiotic efficacy against intracellular S. aureus.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Terapia de Inmunosupresión , Especies Reactivas de Oxígeno , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
4.
PLoS Pathog ; 17(7): e1009660, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34293056

RESUMEN

Antibiotic treatment failure of infection is common and frequently occurs in the absence of genetically encoded antibiotic resistance mechanisms. In such scenarios, the ability of bacteria to enter a phenotypic state that renders them tolerant to the killing activity of multiple antibiotic classes is thought to contribute to antibiotic failure. Phagocytic cells, which specialize in engulfing and destroying invading pathogens, may paradoxically contribute to antibiotic tolerance and treatment failure. Macrophages act as reservoirs for some pathogens and impede penetration of certain classes of antibiotics. In addition, increasing evidence suggests that subpopulations of bacteria can survive inside these cells and are coerced into an antibiotic-tolerant state by host cell activity. Uncovering the mechanisms that drive immune-mediated antibiotic tolerance may present novel strategies to improving antibiotic therapy.


Asunto(s)
Farmacorresistencia Microbiana/fisiología , Animales , Humanos
5.
Biofilm ; 3: 100049, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34124645

RESUMEN

Bacterial biofilms, often associated with chronic infections, respond poorly to antibiotic therapy and frequently require surgical intervention. Biofilms harbor persister cells, metabolically indolent cells, which are tolerant to most conventional antibiotics. In addition, the biofilm matrix can act as a physical barrier, impeding diffusion of antibiotics. Novel therapeutic approaches frequently improve biofilm killing, but usually fail to achieve eradication. Failure to eradicate the biofilm leads to chronic and relapsing infection, is associated with major financial healthcare costs and significant morbidity and mortality. We address this problem with a two-pronged strategy using 1) antibiotics that target persister cells and 2) ultrasound-stimulated phase-change contrast agents (US-PCCA), which improve antibiotic penetration. We previously demonstrated that rhamnolipids, produced by Pseudomonas aeruginosa, could induce aminoglycoside uptake in gram-positive organisms, leading to persister cell death. We have also shown that US-PCCA can transiently disrupt biological barriers to improve penetration of therapeutic macromolecules. We hypothesized that combining antibiotics which target persister cells with US-PCCA to improve drug penetration could improve treatment of methicillin resistant S. aureus (MRSA) biofilms. Aminoglycosides alone or in combination with US-PCCA displayed limited efficacy against MRSA biofilms. In contrast, the anti-persister combination of rhamnolipids and aminoglycosides combined with US-PCCA dramatically improved biofilm killing. This novel treatment strategy has the potential for rapid clinical translation as the PCCA formulation is a variant of FDA-approved ultrasound contrast agents that are already in clinical practice and the low-pressure ultrasound settings used in our study can be achieved with existing ultrasound hardware at pressures below the FDA set limits for diagnostic imaging.

6.
Infect Immun ; 89(10): e0028621, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097475

RESUMEN

Staphylococcus aureus is a leading human pathogen that frequently causes chronic and relapsing infections. Antibiotic-tolerant persister cells contribute to frequent antibiotic failure in patients. Macrophages represent an important niche during S. aureus bacteremia, and recent work has identified a role for oxidative burst in the formation of antibiotic-tolerant S. aureus. We find that host-derived peroxynitrite, the reaction product of superoxide and nitric oxide, is the main mediator of antibiotic tolerance in macrophages. Using a collection of S. aureus clinical isolates, we find that, despite significant variation in persister formation in pure culture, all strains were similarly enriched for antibiotic tolerance following internalization by activated macrophages. Our findings suggest that host interaction strongly induces antibiotic tolerance and may negate bacterial mechanisms of persister formation established in pure culture. These findings emphasize the importance of studying antibiotic tolerance in the context of bacterial interaction with the host and suggest that modulation of the host response may represent a viable therapeutic strategy to sensitize S. aureus to antibiotics.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ácido Peroxinitroso/farmacocinética , Animales , Biopelículas/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos
7.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33526569

RESUMEN

Antibiotic treatment failure of Staphylococcus aureus infections is very common. In addition to genetically encoded mechanisms of antibiotic resistance, numerous additional factors limit the efficacy of antibiotics in vivo Identifying and removing the barriers to antibiotic efficacy are of major importance, as even if new antibiotics become available, they will likely face the same barriers to efficacy as their predecessors. One major obstacle to antibiotic efficacy is the proficiency of S. aureus to enter a physiological state that is incompatible with antibiotic killing. Multiple pathways leading to antibiotic tolerance and the formation of tolerant subpopulations called persister cells have been described for S. aureus Additionally, S. aureus is a versatile pathogen that can infect numerous tissues and invade a variety of cell types, of which some are poorly penetrable to antibiotics. It is therefore unlikely that there will be a single solution to the problem of recalcitrant S. aureus infection. Instead, specific approaches may be required for targeting tolerant cells within different niches, be it through direct targeting of persister cells, sensitization of persisters to conventional antibiotics, improved penetration of antibiotics to particular niches, or any combination thereof. Here, we examine two well-described reservoirs of antibiotic-tolerant S. aureus, the biofilm and the macrophage, the barriers these environments present to antibiotic efficacy, and potential solutions to the problem.


Asunto(s)
Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Manejo de la Enfermedad , Farmacorresistencia Bacteriana , Interacciones Huésped-Patógeno , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/terapia , Staphylococcus aureus/efectos de los fármacos , Resultado del Tratamiento
8.
Nat Microbiol ; 5(3): 526, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32042130

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Microbiol ; 5(2): 282-290, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31819212

RESUMEN

Staphylococcus aureus is a major human pathogen that causes an array of infections ranging from minor skin infections to more serious infections, including osteomyelitis, endocarditis, necrotizing pneumonia and sepsis1. These more serious infections usually arise from an initial bloodstream infection and are frequently recalcitrant to antibiotic treatment1. Phagocytosis by macrophages and neutrophils is the primary mechanism through which S. aureus infection is controlled by the immune system2. Macrophages have been shown to be a major reservoir of S. aureus in vivo3, but the role of macrophages in the induction of antibiotic tolerance has not been explored. Here, we show that macrophages not only fail to efficiently kill phagocytosed S. aureus, but also induce tolerance to multiple antibiotics. Reactive oxygen species generated by respiratory burst attack iron-sulfur cluster-containing proteins, including TCA-cycle enzymes, result in decreased respiration, lower ATP and increased antibiotic tolerance. We further show that respiratory burst induces antibiotic tolerance in the spleen during a murine systemic infection. These results suggest that a major component of the innate immune response is antagonistic to the bactericidal activities of antibiotics.


Asunto(s)
Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/inmunología , Femenino , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Innata , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neutrófilos/inmunología , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...