Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 114: 104810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040049

RESUMEN

Each individual cell type typically requires a unique set of conditions for optimal cryopreservation outcome, which relates to its specific response to cryoprotective agent (CPA) toxicity, osmotic behavior and sensitivity to ice crystallization. Cryopreservation of heterogenous cell populations is therefore exceedingly difficult as it requires separate and often conflicting conditions for each cell type. Conversely, these contrasting conditions could be utilized to favor cryogenic preference of a single cell population within a heterogenous sample, leading to its enrichment by elimination of remaining cells. To establish proof-of-concept for this overall approach, a protocol was developed for the cryogenic enrichment of Plasmodium falciparum gametocytes from whole blood. To accomplish this goal, we evaluated the effects of CPAs and cooling conditions during cryopreservation of whole blood samples spiked with P. falciparum gametocytes. We identified that cooling to -80 °C at a rate of -1 °C/min in the presence of 11 % glycerol selectively favors recovery of gametocytes. This protocol eliminates 95.3 ± 1.7 % of total blood cells and recovers 43.2 ± 6.5 % of parasites, leading to a 19-fold enrichment as assessed by microscopic examination of blood smears. This protocol is tunable, where gametocyte enrichment 900-fold may be feasible, however there is an apparent tradeoff in overall parasite recovery. Although translation of this protocol for point-of-care testing for malaria presents many challenges, the overall approach of cryogenic purification may prove useful for alternative diagnostic applications.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Criopreservación/métodos , Malaria Falciparum/parasitología , Microscopía
2.
Cryobiology ; 103: 150-152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34560067

RESUMEN

Intracellular loading of cryoprotective agents (CPAs) into target cells is a critical step for cryopreservation. However, biological membranes are usually much less permeable to CPAs than to water, resulting in high osmotic pressures and osmotic damage during the CPA loading and unloading phases of cryopreservation. Here, we show that calcium alginate hydrogel beads several millimeters in diamater containing CPAs can be admixed with a cell suspension to spontaneously release CPAs in a gradual and distributed manner. We demonstrate that beads containing cell media enable the gradual removal of CPA from Jurkat cells equilibrated in a typical cryopreservation solution of 15% glycerol, protecting the cells from hypotonic damage. We show that the dynamics of CPA exchange are accurately described by a numerical model of free diffusion within the gel. This approach may enable semiautomated and closed methods of gradual CPA exchange from large volume cell suspensions.


Asunto(s)
Criopreservación , Crioprotectores , Criopreservación/métodos , Crioprotectores/farmacología , Difusión , Dimetilsulfóxido , Glicerol , Humanos , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA