Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 119299, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824984

RESUMEN

Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (µ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MPs g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MPs g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.

2.
Sci Rep ; 14(1): 955, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200041

RESUMEN

Marine reserves (MRs) are implemented worldwide to protect, restore, and manage marine ecosystems and species. However, it is important to document the positive effects those marine reserves have on slow-growth, temperate invertebrates such as abalone. Abalone, Haliotis spp., are marine gastropods of high economic value extracted worldwide for decades, which has led to fisheries-driven population decreases. In this work, we focused on a case study and assessed the short-term (1-2 years) effects of marine reserves established and managed by a local fishing cooperative at Guadalupe Island, Mexico. We evaluated the population status of green abalone, H. fulgens, by conducting (1) an assessment of the green abalone population around Guadalupe Island through subtidal monitoring and (2) an evaluation of the effect of two recently established marine reserves on population parameters such as the increase in density (individuals·m2), biomass, number of aggregated abalone, egg production, and proportion of individuals bigger than 150 mm (minimum harvest size) compared to fished areas. To assess the population around Guadalupe Island, we surveyed 11,160 m2 during 2020 and 2021. We recorded 2327 green abalones with a mean ± SE shell length of 135.978 ± 0.83 mm and a mean density of 0.21 ± 0.02 individuals·m2. All variables were statistically higher at the MRs except for shell length in 2021. In this work, we report for the first time the green abalone population status at Guadalupe Island and a positive short-term biological response to community-based marine reserves. This study suggests that a network of MRs combined with good management could help abalone populations in the short term in Guadalupe Island, potentially leading to more sustainable fishing practices and social-ecological resilience.


Asunto(s)
Ecosistema , Gastrópodos , Humanos , Animales , Proyectos de Investigación , Biomasa , Explotaciones Pesqueras
4.
Nat Commun ; 14(1): 1894, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072389

RESUMEN

While marine kelp forests have provided valuable ecosystem services for millennia, the global ecological and economic value of those services is largely unresolved. Kelp forests are diminishing in many regions worldwide, and efforts to manage these ecosystems are hindered without accurate estimates of the value of the services that kelp forests provide to human societies. Here, we present a global estimate of the ecological and economic potential of three key ecosystem services - fisheries production, nutrient cycling, and carbon removal provided by six major forest forming kelp genera (Ecklonia, Laminaria, Lessonia, Macrocystis, Nereocystis, and Saccharina). Each of these genera creates a potential value of between $64,400 and $147,100/hectare each year. Collectively, they generate between $465 and $562 billion/year worldwide, with an average of $500 billion. These values are primarily driven by fisheries production (mean $29,900, 904 Kg/Ha/year) and nitrogen removal ($73,800, 657 Kg N/Ha/year), though kelp forests are also estimated to sequester 4.91 megatons of carbon from the atmosphere/year highlighting their potential as blue carbon systems for climate change mitigation. These findings highlight the ecological and economic value of kelp forests to society and will facilitate better informed marine management and conservation decisions.


Asunto(s)
Ecosistema , Kelp , Humanos , Bosques , Cambio Climático , Carbono
5.
J Phycol ; 59(3): 552-569, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36973579

RESUMEN

The spread of non-indigenous and invasive seaweeds has increased worldwide, and their potential effects on native seaweeds have raised concern. Undaria pinnatifida is considered among the most prolific non-indigenous species. This species has expanded rapidly in the Northeast Pacific, overlapping with native communities such as the iconic giant kelp forests (Macrocystis pyrifera). Canopy shading by giant kelp has been argued to be a limiting factor for the presence of U. pinnatifida in the understory, thus its invasiveness capacity. However, its physiological plasticity under light limitation remains unclear. In this work, we compared the physiology and growth of juvenile U. pinnatifida and M. pyrifera sporophytes transplanted to the understory of a giant kelp forest, to juveniles growing outside of the forest. Extreme low light availability compared to that outside (~0.2 and ~4.4 mol photon ⋅ m-2 ⋅ d-1 , respectively) likely caused a "metabolic energy crisis" in U. pinnatifida, thus restricting its photoacclimation plasticity and nitrogen acquisition, ultimately reducing its growth. Despite M. pyrifera juveniles showing photoacclimatory responses (e.g., increases in photosynthetic efficiency and lower compensation irradiance, Ec ), their physiological/vegetative status deteriorated similarly to U. pinnatifida, which explains the low recruitment inside the forest. Generally, our results revealed the ecophysiological basis behind the limited growth and survival of juvenile U. pinnatifida sporophytes in the understory.


Asunto(s)
Especies Introducidas , Kelp , Macrocystis , Undaria , Bosques , Macrocystis/fisiología , Fotosíntesis
6.
Biol Bull ; 244(3): 143-163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457680

RESUMEN

AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of ∼2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.


Asunto(s)
Ecosistema , Estrellas de Mar , Animales , Estudios Retrospectivos , Dinámica Poblacional , Temperatura
7.
PLoS One ; 16(4): e0236218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886569

RESUMEN

Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem wide responses are still poorly understood. This study integrates field and experimental data into a mass balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5 pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both individual and population levels, ecosystem-level effects can vary and display nonlinear patterns. Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a decrease in commercial biomass below initial values over time, while ecosystem biomass remains high. Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different community structure characterized by lower biodiversity and relatively greater dominance by lower trophic level organisms.


Asunto(s)
Ácidos/análisis , Ecosistema , Kelp/fisiología , Agua de Mar/análisis , Animales , Biodiversidad , Biomasa , Conservación de los Recursos Naturales , Peces/fisiología , Cadena Alimentaria , Concentración de Iones de Hidrógeno , Océanos y Mares
8.
Glob Chang Biol ; 26(11): 6457-6473, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32902090

RESUMEN

The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.


Asunto(s)
Kelp , Alaska , California , Ecosistema , Bosques , Humanos , México
9.
J Phycol ; 56(4): 880-894, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32282942

RESUMEN

Due to climate change, the incidence of marine heat waves (MHWs) has increased, yet their effects on seaweeds are still not well understood. Adult sporophytes of Macrocystis pyrifera, the species forming the iconic giant kelp forests, can be negatively affected by thermal stress and associated environmental factors (e.g., nutrient depletion, light deprivation); however, little is known about the tolerance/vulnerability of juvenile sporophytes. Simultaneously to MHWs, juveniles can be subjected to light limitation for extended periods of time (days-weeks) due to factors causing turbidity, or even because of shading by understory canopy-forming seaweeds. This study evaluated the effects of a simulated MHW (24°C, 7 d) in combination (or not) with light deprivation, on the photosynthetic capacities, nutrient uptake, and tissue composition, as well as oxidative stress descriptors of M. pyrifera juvenile sporophytes (single blade stage, up to 20 cm length). Maximum quantum yield (Fv /Fm ) decreased in juveniles under light at 24°C, likely reflecting some damage on the photosynthetic apparatus or dynamic photoinhibition; however, no other sign of physiological alteration was found in this treatment (i.e., pigments, nutrient reserves and uptake, oxidative stress). Photosynthetic capacities were maintained or even enhanced in plants under light deprivation, likely supported by photoacclimation (pigments increment); by contrast, nitrate uptake and internal storage of carbohydrates were strongly reduced, regardless of temperature. This study indicated that light limitation can be more detrimental to juvenile survival, and therefore recruitment success of M. pyrifera forests, than episodic thermal stress from MHWs.


Asunto(s)
Kelp , Macrocystis , Cambio Climático , Calor , Fotosíntesis
10.
PLoS One ; 9(10): e109356, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25343723

RESUMEN

Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).


Asunto(s)
Ecosistema , Internet , Programas Informáticos , Bases de Datos Factuales , Humanos , América del Norte , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...