Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38699338

RESUMEN

Epigenetic processes, including DNA methylation, are emerging as key areas of interest for their potential roles as biomarkers and contributors to the risk of neurodevelopmental, psychiatric, and other brain-based disorders. Despite this growing focus, there remains a notable gap in our understanding of how DNA methylation correlates with individual variations in brain function and structure. Additionally, the dynamics of these relationships during developmental periods, which are critical windows during which many disorders first appear, are still largely unexplored. The current study extends the field by examining if peripheral DNA methylation of myelination-related genes predicts white matter volume in a healthy pediatric population [N = 250; females = 113; age range 2 months-14 years; Mage = 5.14, SDage = 3.60]. We assessed if DNA methylation of 17 myelin-related genes predict white matter volume and if age moderates these relationships. Results highlight low variability in myelin-related epigenetic variance at birth, which rapidly increases non-linearly with age, and that DNA methylation, measured at both the level of a CpG site or gene, is highly predictive of white matter volume, in early childhood but not late childhood. These novel findings propel the field forward by establishing that DNA methylation of myelin-related genes from a peripheral tissue is a predictive marker of white matter volume in children and is influenced by developmental stage. The research underscores the significance of peripheral epigenetic patterns as a proxy for investigating the effects of environmental factors, behaviors, and disorders associated with white matter.

2.
Sci Adv ; 9(51): eadi0497, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134274

RESUMEN

Emerging evidence implicates gut microbial metabolism in neurodevelopmental disorders, but its influence on typical neurodevelopment has not been explored in detail. We investigated the relationship between the microbiome and neuroanatomy and cognition of 381 healthy children, demonstrating that differences in microbial taxa and genes are associated with overall cognitive function and the size of brain regions. Using a combination of statistical and machine learning models, we showed that species including Alistipes obesi, Blautia wexlerae, and Ruminococcus gnavus were enriched or depleted in children with higher cognitive function scores. Microbial metabolism of short-chain fatty acids was also associated with cognitive function. In addition, machine models were able to predict the volume of brain regions from microbial profiles, and taxa that were important in predicting cognitive function were also important for predicting individual brain regions and specific subscales of cognitive function. These findings provide potential biomarkers of neurocognitive development and may enable development of targets for early detection and intervention.


Asunto(s)
Microbioma Gastrointestinal , Neuroanatomía , Niño , Humanos , Heces , Cognición , Encéfalo , Microbioma Gastrointestinal/genética
3.
Nutrients ; 15(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37892514

RESUMEN

Observation studies suggest differences in myelination in relation to differences in early life nutrition. This two-center randomized controlled trial investigates the effect of a 12-month nutritional intervention on longitudinal changes in myelination, cognition, and behavior. Eighty-one full-term, neurotypical infants were randomized into an investigational (N = 42) or a control group (N = 39), receiving higher versus lower levels of a blend of nutrients. Non-randomized breastfed infants (N = 108) served as a reference group. Main outcomes were myelination (MRI), neurodevelopment (Bayley-III), social-emotional development (ASQ:SE-2), infant and toddler behavior (IBQ-R and TBAQ), and infant sleep (BISQ) during the first 2 years of life. The full analysis set comprised N = 67 infants from the randomized groups, with 81 myelin-sensitive MRI sequences. Significantly higher myelination was observed in the investigational compared to the control group at 6, 12, 18, and 24 months of life, as well as significantly higher gray matter volume at 24 months, a reduced number of night awakenings at 6 months, increased day sleep at 12 months, and reduced social fearfulness at 24 months. The results suggest that brain development may be modifiable with brain- and age-relevant nutritional approaches in healthy infants and young children, which may be foundational for later learning outcomes.


Asunto(s)
Lactancia Materna , Cognición , Lactante , Femenino , Humanos , Preescolar , Encéfalo/diagnóstico por imagen , Vaina de Mielina , Nutrientes , Desarrollo Infantil
4.
Front Nutr ; 10: 1174441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324730

RESUMEN

Background: Food parenting practices are associated with child weight. Such associations may reflect the effects of parents' practices on children's food intake and weight. However, longitudinal, qualitative, and behavioral genetic evidence suggests these associations could, in some cases, reflect parents' response to children's genetic risk for obesity, an instance of gene-environment correlation. We tested for gene-environment correlations across multiple domains of food parenting practices and explored the role of parent-reported child appetite in these relationships. Materials and methods: Data on relevant variables were available for N = 197 parent-child dyads (7.54 ± 2.67 years; 44.4% girls) participating in RESONANCE, an ongoing pediatric cohort study. Children's body mass index (BMI) polygenic risk score (PRS) were derived based on adult GWAS data. Parents reported on their feeding practices (Comprehensive Feeding Practices Questionnaire) and their child's eating behavior (Child Eating Behavior Questionnaire). Moderation effects of child eating behaviors on associations between child BMI PRS and parental feeding practices were examined, adjusting for relevant covariates. Results: Of the 12 parental feeding practices, 2 were associated with child BMI PRS, namely, restriction for weight control (ß = 0.182, p = 0.011) and teaching about nutrition (ß = -0.217, p = 0.003). Moderation analyses demonstrated that when children had high genetic obesity risk and showed moderate/high (vs. low) food responsiveness, parents were more likely to restrict food intake to control weight. Conclusion: Our results indicate that parents may adjust their feeding practices in response to a child's genetic propensity toward higher or lower bodyweight, and the adoption of food restriction to control weight may depend on parental perceptions of the child's appetite. Research using prospective data on child weight and appetite and food parenting from infancy is needed to further investigate how gene-environment relationships evolve through development.

5.
Front Pediatr ; 11: 1059107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937973

RESUMEN

Self-collection of dried blood samples (DBS) in the participant's home provides an alternative to university/hospital visits for research and has the potential to improve the representation of population heterogeneity in research. This study aimed to assess the feasibility of guardian and/or self-DBS collection in healthy youth in the lab and home. Guardians/youth [N = 140; females = 63; M age = 8.73, SD age = 3.56] who enrolled in a longitudinal study of typical development were asked during a lab visit to provide a DBS. Upon providing a sample, the participants were asked if they would be willing to self-collect in the home and return the sample via the post office. Of those asked to provide a sample in the lab, 82% consented and 18% declined, with a significant difference in age but no significant difference in sex, ethnicity, race, or family income. Of those who provided a sample in the lab, 75% were willing to self-collect DBS in the home, with no significant difference in demographic variables between them. We report a quality assessment and DNA extraction results from a subset of samples. The results demonstrate a high feasibility of DBS collection from healthy youth for research purposes both in the laboratory and in the home across different demographic variables. Developmental researchers should consider including this approach in their studies to increase population heterogeneity representation.

6.
Nutrients ; 15(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36986108

RESUMEN

Appetitive traits are associated with body weight. Increased understanding of how appetitive traits evolve from early life could advance research on obesity risk and inform intervention development. We report on tracking and age-related differences in appetitive traits in childhood within the RESONANCE cohort. Parents of RESONANCE children aged 6.02 ± 2.99 years completed the Child Eating Behavior Questionnaire (CEBQ). Pearson correlations of appetitive traits and age were tested for all participants contributing at least one observation, using each participant's first observation (N = 335). Children's first and second observations of the CEBQ (n = 127) were used to test tracking (paired correlations) and age-related differences (paired t-tests) within individuals. CEBQ correlations with age suggested that satiety responsiveness, slowness in eating, emotional undereating, and desire to drink decreased with age (r = -0.111 to r = -0.269, all p < 0.05), while emotional overeating increased with age (r = 0.207, p < 0.001). Food fussiness demonstrated a quadratic relationship with age. Paired t-tests further supported an increase in emotional overeating with age (M: 1.55 vs. 1.69, p = 0.005). All CEBQ subscales demonstrated moderate to high tracking (r = 0.533 to r = 0.760, p < 0.001). Our initial findings within the RESONANCE cohort suggest that food avoidant traits are negatively related with age, while emotional overeating increases with age, and that appetitive traits track through childhood.


Asunto(s)
Apetito , Conducta Alimentaria , Niño , Humanos , Índice de Masa Corporal , Conducta Alimentaria/psicología , Peso Corporal , Hiperfagia/psicología , Conducta Infantil/psicología , Encuestas y Cuestionarios
7.
Brain Struct Funct ; 228(2): 493-509, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36352153

RESUMEN

Consumer wearables and health monitors, internet-based health and cognitive assessments, and at-home biosample (e.g., saliva and capillary blood) collection kits are increasingly used by public health researchers for large population-based studies without requiring intensive in-person visits. Alongside reduced participant time burden, remote and virtual data collection allows the participation of individuals who live long distances from hospital or university research centers, or who lack access to transportation. Unfortunately, studies that include magnetic resonance neuroimaging are challenging to perform remotely given the infrastructure requirements of MRI scanners, and, as a result, they often omit socially, economically, and educationally disadvantaged individuals. Lower field strength systems (< 100 mT) offer the potential to perform neuroimaging at a participant's home, enabling more accessible and equitable research. Here we report the first use of a low-field MRI "scan van" with an online assessment of paired-associate learning (PAL) to examine associations between brain morphometry and verbal memory performance. In a sample of 67 individuals, 18-93 years of age, imaged at or near their home, we show expected white and gray matter volume trends with age and find significant (p < 0.05 FWE) associations between PAL performance and hippocampus, amygdala, caudate, and thalamic volumes. High-quality data were acquired in 93% of individuals, and at-home scanning was preferred by all individuals with prior MRI at a hospital or research setting. Results demonstrate the feasibility of remote neuroimaging and cognitive data collection, with important implications for engaging traditionally under-represented communities in neuroimaging research.


Asunto(s)
Encéfalo , Envejecimiento Saludable , Humanos , Adulto , Encéfalo/patología , Cognición , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
8.
Sci Rep ; 12(1): 5690, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383255

RESUMEN

Magnetic resonance imaging (MRI) allows important visualization of the brain and central nervous system anatomy and organization. However, unlike electroencephalography (EEG) or functional near infrared spectroscopy, which can be brought to a patient or study participant, MRI remains a hospital or center-based modality. Low magnetic field strength MRI systems, however, offer the potential to extend beyond these traditional hospital and imaging center boundaries. Here we describe the development of a modified cargo van that incorporates a removable low-field permanent magnet MRI system and demonstrate its proof-of-concept. Using phantom scans and in vivo T2-weighted neuroimaging data, we show no significant differences with respect to geometric distortion, signal-to-noise ratio, or tissue segmentation outcomes in data acquired in the mobile system compared to a similar static system in a laboratory setting. These encouraging results show, for the first time, MRI that can be performed at a participant's home, community center, school, etc. Breaking traditional barriers of access, this mobile approach may enable imaging of patients and participants who have mobility challenges, live long distances from imaging centers, or are otherwise unable to travel to an imaging center or hospital.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Relación Señal-Ruido
9.
Dev Cogn Neurosci ; 54: 101059, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35033972

RESUMEN

The NIH HEALthy Brain and Cognitive Development (HBCD) study aims to characterize the impact of in utero exposure to substances, and related environmental exposures on child neurodevelopment and health outcomes. A key focus of HBCD is opioid exposure, which has disproportionately affected rural areas. While most opioid use and neonatal abstinence syndrome has been reported outside of large cities, rural communities are often under-represented in large-scale clinical research studies that involve neuroimaging, in-person assessments, or bio-specimen collections. Thus, there exists a likely mismatch between the communities that are the focus of HBCD and those that can participate. Even geographically proximal participants, however, are likely to bias towards higher socioeconomic status given the anticipated study burden and visit frequency. Wearables, 'nearables', and other consumer biosensors, however, are increasingly capable of collecting continuous physiologic and environmental exposure data, facilitating remote assessment. We review the potential of these technologies for remote in situ data collection, and the ability to engage rural, affected communities. While not necessarily a replacement, these technologies offer a compelling complement to traditional 'gold standard' lab-based methods, with significant potential to expand the study's reach and importance.


Asunto(s)
Analgésicos Opioides , Encéfalo , Niño , Cognición , Humanos , Recién Nacido , Neuroimagen
10.
medRxiv ; 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34401887

RESUMEN

Objective: To characterize cognitive function in young children under 3 years of age over the past decade, and test whether children exhibit different cognitive development profiles through the COVID-19 pandemic. Study Design: Neurocognitive data (Mullen Scales of Early Learning, MSEL) were drawn from 700 healthy and neurotypically developing children between 2011 to 2021 without reported positive tests or clinical diagnosis of SARS-CoV-2 infection. We compared MSEL composite measures (general cognition, verbal, and non-verbal development) to test if those measured during 2020 and 2021 differed significantly from historical 2011-2019 values. We also compared MSEL values in a sub-cohort comprising infants 0-16 months of age born during the pandemic vs. infants born prior. In all analyses, we also included measures of socioeconomic status, birth outcome history, and maternal stress. Results: A significant decrease in mean population MSEL measures was observed in 2021 compared to historical references. Infants born during the pandemic exhibited significantly reduced verbal, non-verbal, and overall cognitive performance compared to children born pre-pandemic. Maternal stress was not found to be associated with observed declines but a higher socioeconomic status was found to be protective. Conclusions: Results reveal a striking decline in cognitive performance since the onset of the COVID-19 pandemic with infants born since mid-2020 showing an average decrease of 27-37 points. Further work is merited to understand the underlying causative factors.

11.
Neuroimage ; 238: 118273, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146712

RESUMEN

Magnetic resonance imaging (MRI) has played an increasingly relevant role in understanding infant, child, and adolescent neurodevelopment, providing new insight into developmental patterns in neurotypical development, as well as those associated with potential psychopathology, learning disorders, and other neurological conditions. In addition, studies have shown the impact of a child's physical and psychosocial environment on developing brain structure and function. A rate-limiting complication in these studies, however, is the high cost and infrastructural requirements of modern MRI systems. High costs mean many neuroimaging studies typically include fewer than 100 individuals and are performed predominately in high resource hospitals and university settings within high income countries (HICs). As a result, our knowledge of brain development, particularly in children who live in lower and middle income countries (LMICs) is relatively limited. Low field systems, with magnetic fields less than 100mT offer the promise of lower scanning costs and wide-spread global adoption, but routine low field pediatric neuroimaging has yet to be demonstrated. Here we present the first pediatric MRI data collected on a low cost and assessable 64mT scanner in children 6 weeks to 16 years of age and replicate brain volumes estimates and developmental trajectories derived from 3T MRI data. While preliminary, these results illustrate the potential of low field imaging as a viable complement to more conventional high field imaging systems, and one that may further enhance our knowledge of neurodevelopment in LMICs where malnutrition, psychosocial adversities, and other environmental exposures may profoundly affect brain maturation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Neuroimagen/métodos , Adolescente , Niño , Humanos , Pediatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...