Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 351: 124055, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692388

RESUMEN

Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.


Asunto(s)
Luz , Reproducción , Gorriones , Animales , Gorriones/fisiología , Ciudades , Cruzamiento , Femenino , Contaminación Ambiental , Iluminación
2.
J Exp Biol ; 223(Pt 3)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31953365

RESUMEN

Future environmental variations linked to climate change are expected to influence precipitation regimes and thus drinking water availability. Dehydration can be a particularly challenging physiological state for most organisms, yet no study has examined the effect of dehydration on the functioning of the hypothalamic-pituitary-adrenal axis in wild endothermic animals, despite its central role in maintaining homeostasis. In this study, we experimentally imposed a temporary water shortage (∼20 h) on captive house sparrows in order to investigate the consequences of short-term dehydration on baseline and stress-induced corticosterone levels. As expected, water-deprived birds displayed higher plasma osmolality and haematocrit. Additionally, water-deprived birds had lower defecation rates, suggesting that the mechanisms allowing caecal water absorption may be triggered very rapidly during water deprivation. Baseline but not stress-induced corticosterone levels were higher in water-deprived birds. Taken together, these results suggest that water restriction may have critical consequences on several corticosterone-related traits such as energy budget (protein catabolism and possibly feeding reduction), enhanced mobility (to promote water acquisition) and potential responses to predators (thirst threshold overriding the acute stress response). Owing to the possible fitness consequences of such components of the day-to-day life of birds, further studies should aim at investigating the influence of future changes in precipitation regimes and drinking water availability on bird populations.


Asunto(s)
Corticosterona/sangre , Gorriones/fisiología , Estrés Fisiológico , Agua/metabolismo , Animales , Deshidratación/metabolismo , Deshidratación/veterinaria , Desecación , Femenino , Francia , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Sistema Hipófiso-Suprarrenal/fisiología
3.
J Insect Physiol ; 117: 103909, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31295454

RESUMEN

In ectotherm species such as insects, thermal fluctuations represent a major environmental factor driving development, survival and reproduction of individuals. Reproductive traits are particularly sensitive to heat stress that can induce a permanent sterility, or at least hypofertility, of adult males. This study aims to compare physiological and biochemical responses associated to male performances to an exposure of 24 h to moderately high temperature (36 °C) among three inbred lines of N. vitripennis (AsymC, Cor, Oul). Cor males showed very specific metabolic adjustments compared to the two other lines. By contrast, Oul males showed stronger phenotypic adjustment of its life cycle, and produced metabolic water to compensate water loss by heat stress. Finally, AsymC males had probably more difficulties to acclimate at 36 °C, even for a short period, as their adult longevity was significantly reduced. Thus, the ability of developmental plasticity in N. vitripennis males exposed to heat stress appears to be dependent of their genotypes.


Asunto(s)
Respuesta al Choque Térmico , Rasgos de la Historia de Vida , Avispas/fisiología , Animales , Genotipo , Longevidad , Masculino , Pupa/crecimiento & desarrollo , Recuento de Espermatozoides
4.
Ecol Evol ; 9(1): 640-652, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680144

RESUMEN

Urban landscapes are associated with abiotic and biotic environmental changes that may result in potential stressors for wild vertebrates. Urban exploiters have physiological, morphological, and behavioral adaptations to live in cities. However, there is increasing evidence that urban exploiters themselves can suffer from urban conditions, especially during specific life-history stages. We looked for a link between the degree of urbanization and the level of developmental stress in an urban exploiter (the house sparrow, Passer domesticus), which has recently been declining in multiple European cities (e.g., London, UK). Specifically, we conducted a large-scale study and sampled juvenile sparrows in 11 urban and rural sites to evaluate their feather corticosterone (CORT) levels. We found that juvenile feather CORT levels were positively correlated with the degree of urbanization, supporting the idea that developing house sparrows may suffer from urban environmental conditions. However, we did not find any correlation between juvenile feather CORT levels and body size, mass, or body condition. This suggests either that the growth and condition of urban sparrows are not impacted by elevated developmental CORT levels, or that urban sparrows may compensate for developmental constraints once they have left the nest. Although feather CORT levels were not correlated with baseline CORT levels, we found that feather CORT levels were slightly and positively correlated with the CORT stress response in juveniles. This suggests that urban developmental conditions may potentially have long-lasting effects on stress physiology and stress sensitivity in this urban exploiter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA