Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645220

RESUMEN

Death of mechanosensory hair cells in the inner ear is a common cause of auditory and vestibular impairment in mammals, which have a limited ability to regrow these cells after damage. In contrast, non-mammalian vertebrates including zebrafish can robustly regenerate hair cells following severe organ damage. The zebrafish inner ear provides an understudied model system for understanding hair cell regeneration in organs that are highly conserved with their mammalian counterparts. Here we quantitatively examine hair cell addition during growth and regeneration of the larval zebrafish inner ear. We used a genetically encoded ablation method to induce hair cell death and observed gradual regeneration with correct spatial patterning over two weeks following ablation. Supporting cells, which surround and are a source of new hair cells, divide in response to hair cell ablation, expanding the possible progenitor pool. In parallel, nascent hair cells arise from direct transdifferentiation of progenitor pool cells uncoupled from progenitor division. These findings reveal a previously unrecognized mechanism of hair cell regeneration with implications for how hair cells may be encouraged to regenerate in the mammalian ear.

2.
Elife ; 122023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598134

RESUMEN

A major cause of human deafness and vestibular dysfunction is permanent loss of the mechanosensory hair cells of the inner ear. In non-mammalian vertebrates such as zebrafish, regeneration of missing hair cells can occur throughout life. While a comparative approach has the potential to reveal the basis of such differential regenerative ability, the degree to which the inner ears of fish and mammals share common hair cells and supporting cell types remains unresolved. Here, we perform single-cell RNA sequencing of the zebrafish inner ear at embryonic through adult stages to catalog the diversity of hair cells and non-sensory supporting cells. We identify a putative progenitor population for hair cells and supporting cells, as well as distinct hair and supporting cell types in the maculae versus cristae. The hair cell and supporting cell types differ from those described for the lateral line system, a distributed mechanosensory organ in zebrafish in which most studies of hair cell regeneration have been conducted. In the maculae, we identify two subtypes of hair cells that share gene expression with mammalian striolar or extrastriolar hair cells. In situ hybridization reveals that these hair cell subtypes occupy distinct spatial domains within the three macular organs, the utricle, saccule, and lagena, consistent with the reported distinct electrophysiological properties of hair cells within these domains. These findings suggest that primitive specialization of spatially distinct striolar and extrastriolar hair cells likely arose in the last common ancestor of fish and mammals. The similarities of inner ear cell type composition between fish and mammals validate zebrafish as a relevant model for understanding inner ear-specific hair cell function and regeneration.


Asunto(s)
Oído Interno , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Transcriptoma , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas Internas , Mamíferos/genética
3.
Dev Cell ; 56(17): 2402-2404, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34520763

RESUMEN

Regenerative repair decreases in many organs as tissue matures. In this issue of Developmental Cell, Tao et al. (2021) identify epigenetic mechanisms that coincide with temporal loss of regenerative potential in the mammalian inner ear.


Asunto(s)
Epigénesis Genética , Células Ciliadas Auditivas , Animales
4.
Mol Vis ; 24: 425-433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034209

RESUMEN

Purpose: The Seahorse XFp platform is widely used for metabolic assessment of cultured cells. Current methods require replating of cells into specialized plates. This is problematic for certain cell types, such as primary human fetal RPE (hfRPE) cells, which must be cultured for months to become properly differentiated. Our goal was to overcome this limitation by devising a method for assaying intact cell monolayers with the Seahorse XFp, without the need for replating. Methods: Primary hfRPE cells were differentiated by prolonged culture on filter inserts. Triangular sections of filters with differentiated cells attached were excised, transferred to XFp cell culture miniplate wells, immobilized at the bottoms, and subjected to mitochondrial stress tests. Replated cells were measured for comparison. Differentiated hfRPE cells were challenged or not with bovine photoreceptor outer segments (POS), and mitochondrial stress tests were performed 3.5 h later, after filter excision and transfer to assay plates. Results: Differentiated hfRPE cells assayed following filter excision demonstrated increased maximal respiration, increased spare respiration capacity, and increased extracellular acidification rate (ECAR) relative to replated controls. hfRPE cells challenged with POS exhibited increased maximal respiration and spare capacity, with no apparent change in the ECAR, relative to untreated controls. Conclusions: We have developed a method to reproducibly assay intact, polarized monolayers of hfRPE cells with the Seahorse XFp platform and have shown that the method yields more robust metabolic measurements compared to standard methods and is suitable for assessing the consequences of prolonged perturbations of differentiated cells. We expect our approach to be useful for a variety of studies involving metabolic assessment of adherent cells cultured on filters.


Asunto(s)
Bioensayo , Respiración de la Célula/efectos de los fármacos , Células Inmovilizadas/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Pigmentos Retinianos/farmacología , Animales , Transporte Biológico , Bovinos , Diferenciación Celular , Respiración de la Célula/fisiología , Células Inmovilizadas/citología , Células Inmovilizadas/metabolismo , Cámaras de Difusión de Cultivos , Metabolismo Energético/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Feto , Humanos , Mitocondrias/metabolismo , Fagocitosis/fisiología , Cultivo Primario de Células , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/aislamiento & purificación
5.
Bio Protoc ; 7(7)2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29177186

RESUMEN

The electroretinogram (ERG) is a sensitive and noninvasive method for testing retinal function. In this protocol, we describe a method for performing ERGs in mice. Contact lenses on the mouse cornea measure the electrical response to a light stimulus of photoreceptors and downstream retinal cells, and the collected data are analyzed to evaluate retinal function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...