Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(46): 19466-19473, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34792081

RESUMEN

Towards eliminating toxic substances from electronic devices, Croconic Acid (CA) has great potential as a sublimable organic ferroelectric material. While studies on CA thin films are just beginning to emerge, its capability to be integrated in nanodevices remains unexplored. We demonstrate at the laterally nanoscopic scale robust ferroelectric switching of a stable enduring polarization at room temperature in CA thin films, without leakage. The challenging ferroelectric characterization at the nanoscale is performed using a unique combination of piezoresponse force microscopy, polarization switching current spectroscopy and concurrent strain response. This helps rationalize the otherwise asymmetric polarization-voltage hysteresis due to background noise limited undetectable switching currents, which are statistically averaged in macrojunctions but become prevalent at the nanoscale. Apart from successfully estimating the nanoscopic polarization in CA thin films, we show that CA is a promising lead-free organic ferroelectric towards nanoscale device integration. Our results, being valid irrespective of the ferroelectrics' nature; organic or inorganic, pave the way for fundamental understandings and technological applications of nanoscopic polarization reversal mechanisms.

2.
Nat Commun ; 11(1): 4247, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843645

RESUMEN

A material's magnetic state and its dynamics are of great fundamental research interest and are also at the core of a wide plethora of modern technologies. However, reliable access to magnetization dynamics in materials and devices on the technologically relevant ultrafast timescale, and under realistic device-operation conditions, remains a challenge. Here, we demonstrate a method of ultrafast terahertz (THz) magnetometry, which gives direct access to the (sub-)picosecond magnetization dynamics even in encapsulated materials or devices in a contact-free fashion, in a fully calibrated manner, and under ambient conditions. As a showcase for this powerful method, we measure the ultrafast magnetization dynamics in a laser-excited encapsulated iron film. Our measurements reveal and disentangle distinct contributions originating from (i) incoherent hot-magnon-driven magnetization quenching and (ii) coherent acoustically-driven modulation of the exchange interaction in iron, paving the way to technologies utilizing ultrafast heat-free control of magnetism. High sensitivity and relative ease of experimental arrangement highlight the promise of ultrafast THz magnetometry for both fundamental studies and the technological applications of magnetism.

3.
ACS Appl Mater Interfaces ; 10(37): 31580-31585, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30136570

RESUMEN

One promising route toward encoding information is to utilize the two stable electronic states of a spin crossover molecule. Although this property is clearly manifested in transport across single molecule junctions, evidence linking charge transport across a solid-state device to the molecular film's spin state has thus far remained indirect. To establish this link, we deploy materials-centric and device-centric operando experiments involving X-ray absorption spectroscopy. We find a correlation between the temperature dependencies of the junction resistance and the Fe spin state within the device's [Fe(H2B(pz)2)2(NH2-phen)] molecular film. We also factually observe that the Fe molecular site mediates charge transport. Our dual operando studies reveal that transport involves a subset of molecules within an electronically heterogeneous spin crossover film. Our work confers an insight that substantially improves the state-of-the-art regarding spin crossover-based devices, thanks to a methodology that can benefit device studies of other next-generation molecular compounds.

4.
Nano Lett ; 18(8): 4659-4663, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29991266

RESUMEN

We performed ferromagnetic resonance and magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer in ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect and spinterface-stabilized molecular spin chains. To disentangle these effects, we tuned the metal phthalocyanine molecule central site's magnetic moment to enhance or suppress the formation of spin chains in the molecular film. We find that both effects are distinct, and additive. In the process, we extend the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, experimentally confirm the predicted increase in anisotropy upon molecular adsorption, and show that spin chains within the molecular film can enhance magnetic exchange. Our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments.

5.
Opt Lett ; 43(3): 447-450, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400811

RESUMEN

We present a new approach for accurate terahertz time-domain spectroscopy of thin films deposited on dielectric substrates. Our approach relies on the simultaneous measurement of film and substrate, allowing for 15 nm-precise determination of the thickness variation between the sample and reference. Our approach allows for unprecedentedly accurate determination of the terahertz conductivity of the thin film. We demonstrate our approach on a 10 nm thin iron film deposited on a 500 µm MgO substrate. We determine the Drude momentum relaxation time in iron to within 0.15 fs uncertainty.

6.
Adv Mater ; 30(11)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29356142

RESUMEN

The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H2 B(pz)2 )2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral FeII complex, [Fe(H2 B(pz)2 )2 (C12 -bpy)] (C12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiOx surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics.

7.
Adv Mater ; 29(19)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28295696

RESUMEN

Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.

8.
J Phys Chem Lett ; 7(13): 2310-5, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27266579

RESUMEN

A high spin polarization of states around the Fermi level, EF, at room temperature has been measured in the past at the interface between a few molecular candidates and the ferromagnetic metal Co. Is this promising property for spintronics limited to these candidates? Previous reports suggested that certain conditions, such as strong ferromagnetism, i.e., a fully occupied spin-up d band of the ferromagnet, or the presence of π bonds on the molecule, i.e., molecular conjugation, needed to be met. What rules govern the presence of this property? We have performed spin-resolved photoemission spectroscopy measurements on a variety of such interfaces. We find that this property is robust against changes to the molecule and ferromagnetic metal's electronic properties, including the aforementioned conditions. This affirms the generality of highly spin-polarized states at the interface between a ferromagnetic metal and a molecule and augurs bright prospects toward integrating these interfaces within organic spintronic devices.

9.
J Phys Chem Lett ; 7(5): 900-4, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26895075

RESUMEN

The properties of Fe(1,10-phenanthroline)2(NCS)2 (Fe-phen) molecules deposited on Co/Cu(111) are studied with scanning tunneling microscopy (STM) operated in ultrahigh vacuum at low temperature (4 K) and ab initio calculations. Both the experimental and theoretical results are used to identify the high-spin (HS) state of Fe-phen. Additionally, the calculations reveal a strong spin-polarization of the density of states (DOS) and is validated experimentally using the spin sensitivity of spin-polarized STM. Finally, it is shown that the magnetic moment of the Fe-ion within HS Fe-phen is strongly magnetically coupled to the underlying magnetic Co through the NCS groups. These findings enable promising spintronic perspectives.

10.
Nano Lett ; 15(12): 7921-6, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26575946

RESUMEN

We experimentally and theoretically show that the magnetic coupling at room temperature between paramagnetic Mn within manganese phthalocyanine molecules and a Co layer persists when separated by a Cu spacer. The molecule's magnetization amplitude and direction can be tuned by varying the Cu-spacer thickness and evolves according to an interlayer exchange coupling mechanism. Ab initio calculations predict a highly spin-polarized density of states at the Fermi level of this metal-molecule interface, thereby strengthening prospective spintronics applications.

11.
Nat Mater ; 14(10): 981-4, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26191660

RESUMEN

Molecular semiconductors may exhibit antiferromagnetic correlations well below room temperature. Although inorganic antiferromagnetic layers may exchange bias single-molecule magnets, the reciprocal effect of an antiferromagnetic molecular layer magnetically pinning an inorganic ferromagnetic layer through exchange bias has so far not been observed. We report on the magnetic interplay, extending beyond the interface, between a cobalt ferromagnetic layer and a paramagnetic organic manganese phthalocyanine (MnPc) layer. These ferromagnetic/organic interfaces are called spinterfaces because spin polarization arises on them. The robust magnetism of the Co/MnPc spinterface stabilizes antiferromagnetic ordering at room temperature within subsequent MnPc monolayers away from the interface. The inferred magnetic coupling strength is much larger than that found in similar bulk, thin or ultrathin systems. In addition, at lower temperature, the antiferromagnetic MnPc layer induces an exchange bias on the Co film, which is magnetically pinned. These findings create new routes towards designing organic spintronic devices.

12.
Phys Rev Lett ; 114(20): 206603, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26047247

RESUMEN

Organic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes. In this Letter, we provide direct evidence of a hybrid interface spin polarization reversal due to the differing hybridization between phthalocyanine molecules and each cobalt electrode in Co/CoPc/Co magnetic tunnel junctions. Tunnel magnetoresistance and anisotropic tunnel magnetoresistance experiments show that interfacial hybridized electronic states have a unidirectional anisotropy that can be controlled by an electric field and that spin hybridization at the bottom and top interfaces differ, leading to an inverse tunnel magnetoresistance.

13.
Phys Rev Lett ; 108(26): 267403, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-23005013

RESUMEN

We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm(2). Employing resonant spatially muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm(2). Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

14.
Nat Commun ; 3: 938, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22760637

RESUMEN

A nanoscale molecular switch can be used to store information in a single molecule. Although the switching process can be detected electrically in the form of a change in the molecule's conductance, adding spin functionality to molecular switches is a key concept for realizing molecular spintronic devices. Here we show that iron-based spin-crossover molecules can be individually and reproducibly switched between a combined high-spin, high-conduction state and a low-spin, low-conduction state, provided the individual molecule is decoupled from a metallic substrate by a thin insulating layer. These results represent a step to achieving combined spin and conduction switching functionality on the level of individual molecules.

15.
Nat Nanotechnol ; 6(3): 185-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21336269

RESUMEN

Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.


Asunto(s)
Indoles/química , Magnetismo , Nanopartículas de Magnetita/química , Nanotecnología/métodos , Cobalto/química , Cristalización/métodos , Conductividad Eléctrica , Impedancia Eléctrica , Electrodos , Electrónica/métodos , Diseño de Equipo , Estudios de Factibilidad , Compuestos Férricos/química , Isoindoles , Magnetismo/instrumentación , Ensayo de Materiales/métodos , Microscopía de Túnel de Rastreo , Procesamiento de Señales Asistido por Computador
16.
Phys Rev Lett ; 89(1): 017401, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097069

RESUMEN

We have characterized by pump-probe polarimetry the time-dependent dielectric tensor in a CoPt3 ferromagnetic film excited by 20 fs laser pulses. It is shown that, after the thermalization time of the electrons (approximately 50 fs), the dynamics of the real and the imaginary parts of the Voigt vector are identical. In addition, their relative variation is 10 times larger than that of the diagonal elements of the tensor, which allows one to infer that the spins dominate the magneto-optical response. During the thermalization process, the temporal behavior of the tensor elements opens new questions concerning the dynamics of the spins associated to a nonthermal electronic population in a ferromagnet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...