Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 118(5): 1294-1307, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778425

RESUMEN

PURPOSE: High-throughput screening (HTS) platforms have been widely used to identify candidate anticancer drugs and drug-drug combinations; however, HTS-based identification of new drug-ionizing radiation (IR) combinations has rarely been reported. Herein, we developed an integrated approach including cell-based HTS and computational large-scale isobolographic analysis to accelerate the identification of radiosensitizing compounds acting strongly and more specifically on cancer cells. METHODS AND MATERIALS: In a 384-well plate format, 160 compounds likely to interfere with the cell response to radiation were screened on human glioblastoma (U251-MG) and cervix carcinoma (ME-180) cell lines, as well as on normal fibroblasts (CCD-19Lu). After drug exposure, cells were irradiated or not and short-term cell survival was assessed by high-throughput cell microscopy. Computational large-scale dose-response and isobolographic approach were used to identify promising synergistic drugs radiosensitizing cancer cells rather than normal cells. Synergy of a promising compound was confirmed on ME-180 cells by an independent 96-well assay protocol, and finally, by the gold-standard colony forming assay. RESULTS: We retained 4 compounds synergistic at 2 isoeffects in U251-MG and ME-180 cell lines and 11 compounds synergistically effective in only one cancer cell line. Among these 15 promising radiosensitizers, 5 compounds showed limited toxicity combined or not with IR on normal fibroblasts. CONCLUSIONS: Overall, this study demonstrated that HTS chemoradiation screening together with large-scale computational analysis is an efficient tool to identify synergistic drug-IR combinations, with concomitant assessment of unwanted toxicity on normal fibroblasts. It sparks expectations to accelerate the discovery of highly desired agents improving the therapeutic index of radiation therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Femenino , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Detección Precoz del Cáncer , Fármacos Sensibilizantes a Radiaciones/farmacología , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral
2.
Nucleic Acids Res ; 51(1): 144-165, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546765

RESUMEN

The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.


Asunto(s)
Antibacterianos , Mycobacterium tuberculosis , Profármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Respuesta al Choque Térmico/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Profármacos/farmacología , Regiones Promotoras Genéticas , Transcripción Genética , Antibacterianos/farmacología
3.
Cell Mol Life Sci ; 79(8): 465, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35925417

RESUMEN

Identifying new molecular targets for novel anticancer treatments is a major challenge in clinical cancer research. We have shown that cytidine deaminase (CDA) expression is downregulated in about 60% of cancer cells and tissues. In this study, we aimed to develop a new anticancer treatment specifically inhibiting the growth of CDA-deficient tumor cells. High-throughput screening of a chemical library led to the identification of a naphthol derivative, X55, targeting CDA-deficient tumor cells preferentially, without affecting the growth of non-tumoral cells regardless of CDA expression status. Metabolomic profiling revealed that CDA-deficient HeLa cells differed markedly from control HeLa cells. X55 treatment had a moderate effect on control cells, but greatly disturbed the metabolome of CDA-deficient HeLa cells, worsening the deregulation of many metabolites. In particular, the levels of the three oncometabolites, fumarate, succinate and 2-hydroxyglutarate, were significantly lower in CDA-depleted cells, and this decrease in levels was exacerbated by X55 treatment, revealing an unexpected link between CDA deficiency, mitochondrial function and X55 response. Finally, we identified strong downregulation of MAPT (encoding Tau, a microtubule associated protein) expression as a reliable predictive marker for tumor cell X55 sensitivity.


Asunto(s)
Citidina Desaminasa , Naftoles , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Células HeLa , Humanos
4.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861550

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/farmacología , Unión Proteica , Piridinas/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
5.
Dis Model Mech ; 15(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842273

RESUMEN

With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified as possessing anti-TB activity in vitro. To aid solubilization, compounds were formulated in biocompatible polymeric micelles (PMs). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating the in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited for pinpointing promising compounds for further development.


Asunto(s)
Mycobacterium tuberculosis , Nanopartículas , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Ratones , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pez Cebra/microbiología
6.
Nucleic Acids Res ; 49(13): 7695-7712, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34232992

RESUMEN

The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.


Asunto(s)
COVID-19/virología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , G-Cuádruplex , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Secuencia de Aminoácidos , Proteasas Similares a la Papaína de Coronavirus/química , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análisis Espectral , Relación Estructura-Actividad , Replicación Viral
7.
Chemistry ; 27(3): 1113-1121, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33617136

RESUMEN

Stabilizing the DNA and RNA structures known as G-quadruplexes (G4s) using specific ligands is a strategy that has been proposed to fight cancer. However, although G-quadruplex:ligand (G4:L) interactions have often been investigated, whether or not ligands are able to disrupt G-quadruplex:protein (G4:P) interactions remains poorly studied. In this study, using native mass spectrometry, we have investigated ternary G4:L:P complexes formed by G4s, some of the highest affinity ligands, and the binding domain of the RHAU helicase. Our results suggest that RHAU binds not only preferentially to parallel G4s, but also to free external G-quartets. We also found that, depending on the G4, ligands could prevent the binding of the peptide, either by direct competition for the binding sites (orthosteric inhibition) or by inducing conformational changes (allosteric inhibition). Notably, the ligand Cu-ttpy (ttpy=4'-tolyl-2,2':6',2''-terpyridine) induced a conformational change that increased the binding of the peptide. This study illustrates that it is important to not only characterize drug-target interactions, but also how the binding to other partners is affected.


Asunto(s)
ARN Helicasas DEAD-box/química , ADN/química , G-Cuádruplex , ARN/química , Sitios de Unión , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ligandos
8.
Cells ; 9(11)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158165

RESUMEN

Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.


Asunto(s)
Mycobacterium abscessus/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Animales , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Humanos , Larva/microbiología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/patogenicidad , Mycobacterium abscessus/ultraestructura , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Fenotipo , Homología Estructural de Proteína , Células THP-1 , Virulencia , Pez Cebra
9.
Eur J Med Chem ; 178: 13-29, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173968

RESUMEN

The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 µM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 µM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.


Asunto(s)
Hidrazonas/farmacología , Evasión Inmune/efectos de los fármacos , Factores Inmunológicos/farmacología , Fosfoproteínas/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular Tumoral , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , G-Cuádruplex , Herpesvirus Humano 4/genética , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Factores Inmunológicos/síntesis química , Factores Inmunológicos/química , Ligandos , Ratones , ARN Mensajero/genética , Nucleolina
10.
Mol Inform ; 38(5): e1800118, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30725535

RESUMEN

Acetylcholinesterase (AChE) is currently the most favorable target for the symptomatic treatment and reduction of Alzheimer's disease (AD). In order to identify new potent inhibitors of this enzyme, we describe herein a new structure-based virtual screening (SBVS) using the Institut Curie-CNRS chemical library (ICCL), which contained at the screening date 14307 compounds. The strategy undertaken in this work consisted of the use of several docking programs in SBVS calculations followed by the application of a consensus method (vSDC) and a scrupulous visual analysis. It allowed us to obtain a high degree of success, with a yield of almost 86 %, since 12 hits were identified among only 14 molecules tested in vitro. Still more remarkably, 6 of these hits were more active than galantamine, the reference inhibitor. These hits were predicted to have good ADMET properties. The two most promising compounds can serve as leads for AD treatment.


Asunto(s)
Inhibidores de la Colinesterasa/análisis , Evaluación Preclínica de Medicamentos/métodos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular
11.
Molecules ; 24(3)2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30678027

RESUMEN

Guanine-rich DNA can form four-stranded structures called G-quadruplexes (G4s) that can regulate many biological processes. Metal complexes have shown high affinity and selectivity toward the quadruplex structure. Here, we report the comparison of a panel of platinum (II) complexes for quadruplex DNA selective recognition by exploring the aromatic core around terpyridine derivatives. Their affinity and selectivity towards G4 structures of various topologies have been evaluated by FRET-melting (Fluorescence Resonance Energy Transfert-melting) and Fluorescent Intercalator Displacement (FID) assays, the latter performed by using three different fluorescent probes (Thiazole Orange (TO), TO-PRO-3, and PhenDV). Their ability to bind covalently to the c-myc G4 structure in vitro and their cytotoxicity potential in two ovarian cancerous cell lines were established. Our results show that the aromatic surface of the metallic ligands governs, in vitro, their affinity, their selectivity for the G4 over the duplex structures, and platination efficiency. However, the structural modifications do not allow significant discrimination among the different G4 topologies. Moreover, all compounds were tested on ovarian cancer cell lines and normal cell lines and were all able to overcome cisplatin resistance highlighting their interest as new anticancer drugs.


Asunto(s)
G-Cuádruplex/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Platino (Metal)/química , Proteínas Proto-Oncogénicas c-myc/química , Anticarcinógenos/química , Anticarcinógenos/uso terapéutico , Cisplatino/efectos adversos , Cisplatino/química , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Humanos , Ligandos , Conformación de Ácido Nucleico/efectos de los fármacos , Piridinas/química
12.
Mol Imaging Biol ; 21(2): 269-278, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29942990

RESUMEN

PURPOSE: The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). PROCEDURES: Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I0.25, based on the intensity distribution in T2*-weighted MRI images was developed to compare the accumulation of T2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I0.25 (I0.25 = 0.25(Imax - Imin)) was calculated on the intensity distribution histogram. RESULTS: This innovative method of processing MRI images showed the MT efficiency by a %I0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. CONCLUSIONS: We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T2 contrast agents.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Imagen por Resonancia Magnética , Magnetismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Liposomas , Hígado/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH
13.
Sci Rep ; 7(1): 10209, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860487

RESUMEN

Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in ß-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Pirimidinas/farmacología , Pirroles/farmacología , Moduladores de Tubulina/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Colchicina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pirimidinas/química , Pirroles/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Org Biomol Chem ; 15(34): 7117-7121, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28825434

RESUMEN

We report a new turn-off fluorescent probe, PhenDV, for the identification of high affinity quadruplex (G4) DNA ligands. This push-pull fluorophore displays a high fluorescence quantum yield in water (ΦF = 0.21) and is a selective and strong quadruplex DNA binder. We describe its use as a fluorescent indicator for the G4 Fluorescent Intercalator Displacement (FID) assay as its fluorescence is strongly quenched when bound to G4 DNA and fully restored when displaced by ligand. This probe improves the sensitivity of the G4-FID assay, as the read out relies on increased fluorescence instead of quenching observed with classical on/off probes.


Asunto(s)
ADN/química , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes/química , G-Cuádruplex , Ligandos , Límite de Detección
15.
J Med Chem ; 60(17): 7425-7433, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28846409

RESUMEN

In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Nitrorreductasas/metabolismo , Tiazoles/química , Tiazoles/farmacología , Regulación hacia Abajo , Farmacorresistencia Bacteriana , Humanos , Mycobacterium/efectos de los fármacos , Mycobacterium/enzimología , Mycobacterium/genética , Infecciones por Mycobacterium/tratamiento farmacológico , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/genética , Nitrocompuestos , Nitrorreductasas/genética
16.
Nat Commun ; 8: 16043, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28685753

RESUMEN

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1, which is essential for viral genome maintenance but highly antigenic. EBV has seemingly evolved a system in which the mRNA sequence encoding the glycine-alanine repeats (GAr) of the EBNA1 protein limits its expression to the minimal level necessary for function while minimizing immune recognition. Here, we identify nucleolin (NCL) as a host factor required for this process via a direct interaction with G-quadruplexes formed in GAr-encoding mRNA sequence. Overexpression of NCL enhances GAr-based inhibition of EBNA1 protein expression, whereas its downregulation relieves the suppression of both expression and antigen presentation. Moreover, the G-quadruplex ligand PhenDC3 prevents NCL binding to EBNA1 mRNA and reverses GAr-mediated repression of EBNA1 expression and antigen presentation. Hence the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to trigger an immune response against EBV-carrying cancers.


Asunto(s)
Linfocitos B/inmunología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Evasión Inmune/genética , Fosfoproteínas/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Aminoquinolinas/farmacología , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/virología , Línea Celular Tumoral , Antígenos Nucleares del Virus de Epstein-Barr/inmunología , G-Cuádruplex , Células HCT116 , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/inmunología , Humanos , Leontopithecus , Ligandos , Fosfoproteínas/inmunología , Ácidos Picolínicos/farmacología , Quinolinas/farmacología , ARN Mensajero/inmunología , Proteínas de Unión al ARN/inmunología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nucleolina
17.
Org Lett ; 19(4): 910-913, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28177639

RESUMEN

An intriguing conversion of 3-bromo-2H-coumarins to 3-(benzofuran-2-yl)-2H-coumarins under palladium catalysis is reported. The process involves, from only one single starting material, three transformations and two bond formations in one pot: C-C bond formation via C-H activation and C-O bond formation through 2H-coumarin-to-benzofuran ring contraction under palladium catalysis. Moreover, the photophysical properties of all synthesized compounds were studied.

18.
Eur J Med Chem ; 122: 436-441, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27404558

RESUMEN

In this manuscript we describe synthesis and cytotoxicity evaluation of some triazolic derivatives against B16 melanoma cell line. For this purpose, we transformed a set of aromatic aldehydes into terminal alkynes, using Besthmann-Ohira reagent, and we made the corresponding hydroxymethyl homologated alkynes by an acetylene Grignard reagent. These generated two sets of alkynes were then subjected to a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC) using a solid-supported catalyst (Amberlyst A-21 CuI), with a third set composed of organic azides. Synthesized triazoles were then tested in vitro against B16 melanoma cell line. Amongst them, compounds a1b1 (R(1) = p-nitrophenyl, R(2) = benzyl), a4b1 (R(1) = naphthyl, R(2) = benzyl) and a4b5 (R(1) = naphthyl, R(2) = (R/S)- dioxolane) showed the best activity against B16 melanoma cells, with IC50 of 5.12, 3.89 and 6.60 µM respectively.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Melanoma Experimental/patología , Triazoles/síntesis química , Triazoles/farmacología , Animales , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Técnicas de Química Sintética , Metano/química , Ratones , Triazoles/química
19.
Molecules ; 15(5): 3087-120, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20657466

RESUMEN

This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.


Asunto(s)
Cobre/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Triazoles/síntesis química , Automatización , Catálisis , Técnicas Químicas Combinatorias , Filtración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...