Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Physiol ; 596(16): 3675-3693, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29774557

RESUMEN

KEY POINTS: Diabetes is thought to induce neuropathic pain through activation of dorsal horn sensory neurons in the spinal cord. Here we explore the impact of hyperglycaemia on the blood supply supporting the spinal cord and chronic pain development. In streptozotocin-induced diabetic rats, neuropathic pain is accompanied by a decline in microvascular integrity in the dorsal horn. Hyperglycaemia-induced degeneration of the endothelium in the dorsal horn was associated with a loss in vascular endothelial growth factor (VEGF)-A165 b expression. VEGF-A165 b treatment prevented diabetic neuropathic pain and degeneration of the endothelium in the spinal cord. Using an endothelial-specific VEGFR2 knockout transgenic mouse model, the loss of endothelial VEGFR2 signalling led to a decline in vascular integrity in the dorsal horn and the development of hyperalgesia in VEGFR2 knockout mice. This highlights that vascular degeneration in the spinal cord could be a previously unidentified factor in the development of diabetic neuropathic pain. ABSTRACT: Abnormalities of neurovascular interactions within the CNS of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of vascular endothelial growth factor (VEGF)-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, and there was a concurrent reduction of VEGF-A165 b expression. In diabetic animals, VEGF-A165 b treatment (biweekly i.p., 20 ng g-1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreERT2 -vegfr2flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade, resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain.


Asunto(s)
Complicaciones de la Diabetes/etiología , Diabetes Mellitus Experimental/complicaciones , Angiopatías Diabéticas/etiología , Neuropatías Diabéticas/etiología , Hiperalgesia/etiología , Neuralgia/etiología , Médula Espinal/patología , Animales , Células Cultivadas , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/prevención & control , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/prevención & control , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/prevención & control , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/prevención & control , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microvasos/fisiopatología , Neuralgia/metabolismo , Neuralgia/patología , Neuralgia/prevención & control , Ratas , Ratas Sprague-Dawley , Médula Espinal/irrigación sanguínea , Médula Espinal/metabolismo , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
3.
Neurobiol Dis ; 71: 245-59, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25151644

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy.


Asunto(s)
Anticuerpos/uso terapéutico , ADN Recombinante/genética , Neuralgia/metabolismo , Neuralgia/terapia , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular , Animales , Anticuerpos/farmacología , Benzofuranos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ganglios Espinales/citología , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Transgénicos , Conducción Nerviosa/genética , Dimensión del Dolor , Umbral del Dolor/fisiología , Quinolinas , ARN Mensajero/genética , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...