Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 463, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802782

RESUMEN

BACKGROUND: Fusarium graminearum and Fusarium avenaceum are two of the most important causal agents of Fusarium head blight (FHB) of wheat. They can produce mycotoxins that accumulate in infected wheat heads, including deoxynivalenol (DON) and enniatins (ENNs), produced by F. graminearum and F. avenaceum, respectively. While the role of DON as a virulence factor in F. graminearum toward wheat is well known, ENNs in F. avenaceum has been poorly explored. Results obtained to-date indicate that ENNs may confer an advantage to F. avenaceum only on particular hosts. RESULTS: In this study, with the use of ENN-producing and ENN non-producing F. avenaceum strains, the role of ENNs on F. avenaceum virulence was investigated on the root, stem base and head of common wheat, and compared with the role of DON, using DON-producing and DON non-producing F. graminearum strains. The DON-producing F. graminearum strain showed a significantly higher ability to cause symptoms and colonise each of the tested tissues than the non-producing strain. On the other hand, the ability to produce ENNs increased initial symptoms of the disease and fungal biomass accumulation, measured by qPCR, only in wheat heads, and not in roots or stem bases. LC-MS/MS analysis was used to confirm the presence of ENNs and DON in the different strains, and results, both in vitro and in wheat heads, were consistent with the genetics of each strain. CONCLUSION: While the key role of DON on F. graminearum virulence towards three different wheat tissues was noticeable, ENNs seemed to have a role only in influencing F. avenaceum virulence on common wheat heads probably due to an initial delay in the appearance of symptoms.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Tricotecenos , Triticum , Triticum/microbiología , Triticum/metabolismo , Fusarium/patogenicidad , Fusarium/genética , Fusarium/metabolismo , Tricotecenos/metabolismo , Virulencia , Enfermedades de las Plantas/microbiología , Micotoxinas/metabolismo , Depsipéptidos
2.
Pest Manag Sci ; 80(6): 2991-2999, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38312069

RESUMEN

BACKGROUND: Fusarium species are responsible for Fusarium head blight (FHB) in wheat, resulting in yield losses and mycotoxin contamination. Deoxynivalenol (DON) and enniatins (ENNs) are common mycotoxins produced by Fusarium, affecting plant, animal and human health. Although DON's effects have been widely studied, limited research has explored the impact of ENNs on insects. This study examines the influence of DON and enniatin B (ENB), both singularly and in combination, on the wheat aphid Sitobion avenae and one of its predators, the lacewing Chrysoperla carnea. RESULTS: When exposed to DON (100 mg L-1) or DON + ENB (100 mg L-1), S. avenae exhibited significantly increased mortality compared to the negative control. ENB (100 mg L-1) had no significant effect on aphid mortality. DON-treated aphids showed increasing mortality from 48 to 96 h. A dose-response relationship with DON revealed significant cumulative mortality starting at 25 mg L-1. By contrast, C. carnea larvae exposed to mycotoxins via cuticular application did not show significant differences in mortality when mycotoxins were dissolved in water but exhibited increased mortality with acetone-solubilized DON + ENB (100 mg L-1). Feeding C. carnea with aphids exposed to mycotoxins (indirect exposure) did not impact their survival or predatory activity. Additionally, the impact of mycotoxins on C. carnea was observed only with acetone-solubilized DON + ENB. CONCLUSIONS: These findings shed light on the complex interactions involving mycotoxins, aphids and their predators, offering valuable insights for integrated pest management strategies. Further research should explore broader ecological consequences of mycotoxin contamination in agroecosystems. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Depsipéptidos , Tricotecenos , Animales , Áfidos/efectos de los fármacos , Áfidos/crecimiento & desarrollo , Tricotecenos/toxicidad , Depsipéptidos/farmacología , Conducta Predatoria/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Triticum , Insectos/efectos de los fármacos , Cadena Alimentaria , Fusarium/efectos de los fármacos
4.
J Fungi (Basel) ; 9(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37367606

RESUMEN

The wheat pathogen Zymoseptoria tritici can respond to light by modulating its gene expression. Because several virulence-related genes are differentially expressed in response to light, different wavelengths could have a crucial role in the Z. tritici-wheat interaction. To explore this opportunity, the aim of this study was to analyze the effect of blue (470 nm), red (627 nm), blue-red, and white light on the in vitro and in planta development of Z. tritici. The morphology (mycelium appearance, color) and phenotypic (mycelium growth) characteristics of a Z. tritici strain were evaluated after 14 days under the different light conditions in two independent experiments. In addition, bread wheat plants were artificially inoculated with Z. tritici and grown for 35 days under the same light treatments. The disease incidence, severity, and fungal DNA were analyzed in a single experiment. Statistical differences were determined by using an ANOVA. The obtained results showed that the different light wavelengths induced specific morphological changes in mycelial growth. The blue light significantly reduced colony growth, while the dark and red light favored fungal development (p < 0.05). The light quality also influenced host colonization, whereby the white and red light had stimulating and repressing effects, respectively (p < 0.05). This precursory study demonstrated the influence of light on Z. tritici colonization in bread wheat.

5.
Toxins (Basel) ; 15(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37104209

RESUMEN

Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.


Asunto(s)
Fusarium , Micotoxinas , Animales , Humanos , Contaminación de Alimentos/análisis , Micotoxinas/toxicidad , Micotoxinas/análisis , Insectos , Grano Comestible/química
6.
Pathogens ; 12(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36986340

RESUMEN

A total of 25 marketed quinoa seed samples different for origin, farming system and packaging were analyzed for the presence of mycotoxigenic fungi (by isolation both on Potato Dextrose Agar and with the deep-freezing blotter method) and relative contamination by mycotoxins (by LC-MS/MS analysis). Fungal microorganisms, but not mycotoxins, were detected in all the samples, and 25 isolates representative of the mycobiota were obtained. Morphological and molecular characterization and, for some isolates, the in vitro mycotoxigenic profile, allowed the identification of 19 fungal species within five different genera: Alternaria, Aspergillus, Penicillium, Cladosporium and Fusarium. Among the identified species, Alternaria abundans, A. chartarum, A. arborescens, Cladosporium allicinum, C. parasubtilissimum, C. pseudocladosporioides, C. uwebraunianum, Aspergillus jensenii, A. tubingensis, Penicillium dipodomyis, P. verrucosum and P. citreosulfuratum were first reported on quinoa, and Alternaria infectoria and Fusarium oxysporum were first reported on quinoa seeds. The geographical origin, farming system and packaging were showed to affect the amount and type of the isolated fungal species, highlighting that the level of fungal presence and their related secondary metabolites is conditioned by different steps of the quinoa supply chain. However, despite the presence of mycotoxigenic fungi, the marketed quinoa seeds analyzed resulted in being free from mycotoxins.

7.
J Sci Food Agric ; 103(9): 4503-4521, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36828788

RESUMEN

BACKGROUND: The evolution of the fungal communities associated with durum wheat was assessed using different diagnostic approaches. Durum wheat grain samples were collected in three different Italian cultivation macro-areas (north, center and south). Fungal isolation was realized by potato dextrose agar (PDA) and by deep-freezing blotter (DFB). Identification of Fusarium isolates obtained from PDA was achieved by partial tef1α sequencing (PDA + tef1α), while those obtained from DFB were identified from their morphological characteristics (DFB + mc). The fungal biomass of eight Fusarium species was quantified in grains by quantitative polymerase chain reaction (qPCR). Fungal secondary metabolites were analyzed in grains by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Correlations between Fusarium detection techniques (PDA + tef1α; DFB + mc and qPCR) and mycotoxins in grains were assessed. RESULTS: Alternaria and Fusarium showed the highest incidence among the fungal genera developed from grains. Within the Fusarium community, PDA + tef1α highlighted that F. avenaceum and F. graminearum were the most represented members, while, DFB + mc detected a high presence of F. proliferatum. Alternaria and Fusarium mycotoxins, principally enniatins, were particularly present in the grain harvested in central Italy. Deoxynivalenol was mainly detected in northern-central Italy. CONCLUSIONS: The adoption of the different diagnostic techniques of Fusarium detection highlighted that, for some species, qPCR was the best method of predicting their mycotoxin contamination in grains. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Fusarium , Micobioma , Micotoxinas , Cromatografía Liquida , Triticum/química , Contaminación de Alimentos/análisis , Espectrometría de Masas en Tándem , Micotoxinas/metabolismo , Grano Comestible/química , Italia
9.
J Sci Food Agric ; 102(14): 6358-6372, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35535556

RESUMEN

BACKGROUND: Fusarium poae is one of the most common Fusarium head blight (FHB) causal agents in wheat. This species can biosynthesize a wide range of mycotoxins, in particular nivalenol (NIV). In FHB epidemiology, infection timing is important for disease occurrence, kernel development, symptom appearance and mycotoxin accumulation in grain. The present study explored, both in a controlled environment and in a 2-year field plot experiment in Central Italy, the influence of five infection timings (from beginning of flowering to medium milk growth stage) on F. poae colonization and mycotoxin accumulation in bread wheat spikes (spring cv. A416 and winter cv. Ambrogio). RESULTS: Both climate chamber and field experiments showed that early infection timings (from beginning of flowering to full flowering) especially favoured F. poae colonization and accumulation of its mycotoxins (particularly NIV) in grain. By contrast, later infection timings (watery ripe and medium milk) reduced F. poae development and mycotoxin levels. The time window of host susceptibility in the field was shorter than that observed under controlled conditions. Symptom expression in kernels also differed among infection timings. In general, F. poae biomass was higher in the chaff than in the grain. CONCLUSION: These results enhance knowledge of a common member of the FHB complex worldwide, and could be useful in forecasting the risk of F. poae infection and mycotoxin contamination. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Fusarium , Micotoxinas , Pan , Grano Comestible/química , Micotoxinas/análisis , Enfermedades de las Plantas , Tricotecenos , Triticum/metabolismo
10.
Pathogens ; 11(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35335615

RESUMEN

Pyrenophora teres is the causal agent of barley net blotch (NB), a disease that can be found in two different forms: net form (NFNB), caused by P. teres f. teres, and spot form (SFNB), caused by P. teres f. maculata. A two-year field experiment was carried out to evaluate the response to NB of six different barley cultivars for malt or feed/food production. In addition, the efficacy of several recently developed foliar fungicides with different modes of action (SDHI, DMI, and QoI) towards the disease was examined. After NB leaf symptom evaluation, the identification of P. teres forms was performed. Grain yield was determined, and pathogen biomass was quantified in the grain by qPCR. In the two experimental years characterized by different climatic conditions, only P. teres f. teres was detected. The tested cultivars showed different levels of NFNB susceptibility. In particular, the two-row cultivars for malt production showed the highest disease incidence. All applied fungicides exhibited a high efficacy in reducing disease symptoms on leaves and pathogen accumulation in grains. In fact, high levels of fungal biomass were detected only in the grain of the untreated malting barley cultivars. For some cultivars, grain yield was positively influenced by the application of fungicides.

11.
Toxins (Basel) ; 13(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34679021

RESUMEN

Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)-a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg-1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg-1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition.


Asunto(s)
Depsipéptidos/toxicidad , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Tricotecenos/toxicidad , Triticum/efectos de los fármacos , Clorofila/análisis , Fusarium/crecimiento & desarrollo , Germinación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
12.
Plants (Basel) ; 10(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579464

RESUMEN

In 2017, in a new Chenopodium quinoa cultivation area (Central Italy), emergence failures of the Titicaca, Rio Bamba, and Real varieties, whose seeds were obtained the previous year (2016) in the same location, were observed. Moreover, leaf disease symptoms on the Regalona variety, whose seeds came from Chile, were detected. Visual and microscopic analyses showed the presence of browning/necrotic symptoms on the seeds of the three varieties whose emergence in the field had failed. In addition, their in vitro germination rates were strongly compromised. Fusarium spp. was isolated with high incidence from Titicaca, Rio Bamba, and Real seeds. Among the detected Fusarium species, in the phylogenetic analysis, the dominant one clustered in the sub-clade Equiseti of the Fusarium incarnatum-equiseti (FIESC) species complex. Instead, the pathogen associated with Regalona leaf symptoms was identified, by morphological and molecular features, as Peronospora variabilis, the causal agents of downy mildew. This is the first report of both P. variabilis and F. equiseti on C. quinoa in Italy. Species-specific primers also detected P. variabilis in Regalona seeds. These results underline the importance of pathogen monitoring in new quinoa distribution areas, as well as of healthy seed production and import for successful cultivation.

13.
Plants (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451770

RESUMEN

In this study, the in vitro effects of different Se concentrations (5, 10, 15, 20, and 100 mg kg-1) from different Se forms (sodium selenite, sodium selenate, selenomethionine, and selenocystine) on the development of a Fusarium proliferatum strain isolated from rice were investigated. A concentration-dependent effect was detected. Se reduced fungal growth starting from 10 mg kg-1 and increasing the concentration (15, 20, and 100 mg kg-1) enhanced the inhibitory effect. Se bioactivity was also chemical form dependent. Selenocystine was found to be the most effective at the lowest concentration (5 mg kg-1). Complete growth inhibition was observed at 20 mg kg-1 of Se from selenite, selenomethionine, and selenocystine. Se speciation analysis revealed that fungus was able to change the Se speciation when the lowest Se concentration was applied. Scanning Electron Microscopy showed an alteration of the fungal morphology induced by Se. Considering that the inorganic forms have a higher solubility in water and are cheaper than organic forms, 20 mg kg-1 of Se from selenite can be suggested as the best combination suitable to inhibit F. proliferatum strain. The addition of low concentrations of Se from selenite to conventional fungicides may be a promising alternative approach for the control of Fusarium species.

14.
Cells ; 10(5)2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068122

RESUMEN

DNA methylation mediates organisms' adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.


Asunto(s)
Metilación de ADN , ADN de Hongos/genética , Grano Comestible/microbiología , Fusarium/genética , Triticum/microbiología , Factores de Virulencia/genética , Grano Comestible/crecimiento & desarrollo , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno , Triticum/crecimiento & desarrollo , Virulencia
15.
Plant Dis ; 104(11): 2928-2939, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32900293

RESUMEN

The duration of wheat susceptibility to Fusarium infection has implications for risk forecasting, fungicide timing, and the likelihood that visible kernel damage may underpredict deoxynivalenol (DON) contamination. A field experiment was conducted to explore the impact of varying infection timings on Fusarium head blight (FHB) development in winter wheat. Trials in four successive years (2010 to 2013) in North Carolina utilized one susceptible and one moderately resistant cultivar possessing similar maturity, stature, and grain quality. Inoculum was applied in the form of sprayed Fusarium graminearum conidia. In the first year, the nine infection timings were from 0 to 21 days after anthesis (daa), whereas in the following 3 years, they ranged from 0 to 13 daa. Infection progression was compared among inoculation timings by sampling spikes five to six times during grain-fill. Based on DON, percent kernel damage and kernel infection, and fungal spread as assayed via qPCR, the moderately resistant cultivar had at least a 2- to 3-day shorter window of susceptibility to damaging FHB infection than the susceptible cultivar. The results suggest that duration of susceptibility is an important aspect of cultivar resistance to FHB. In 2012, the window of susceptibility for both cultivars was extended by cold snaps during anthesis. After debranning in one year, the majority of DON was found to be in the bran fraction of kernels; there was also a trend for later infections to lead to a higher percentage of DON in the nonbran fraction, as well as a higher ratio of DON to FDK.


Asunto(s)
Fusarium , Tricotecenos , North Carolina , Enfermedades de las Plantas , Triticum
16.
Pest Manag Sci ; 76(11): 3738-3748, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32430980

RESUMEN

BACKGROUND: Fusarium head blight (FHB) is a complex disease of wheat and barley caused by several Fusarium species. In recent years, a variation in the composition of the FHB community has been observed in several wheat cultivation areas across the world. In detail, F. avenaceum and F. poae increased their frequencies, while, a lower F. graminearum and F. culmorum incidence was simultaneously observed. These shifts within the FHB complex might have been caused by different factors, including the selective pressure caused by fungicides used to control the disease in the field. Therefore, the present study was carried out to evaluate, both in in vitro experiments and in field trials, the activity of commonly used fungicides of wheat (tebuconazole, metconazole, prothioconazole and prochloraz) towards the above mentioned four Fusarium species. RESULTS: A preliminary in vitro assay revealed that low concentrations of all tested fungicides caused the incomplete reduction of fungal development. Furthermore, F. poae and F. avenaceum showed, at the same time, a lower sensitivity to all tested fungicides. In field trials, all fungicides showed an activity against the four Fusarium species. However, F. avenaceum exhibited a reduced sensitivity to metconazole. The lower efficacy of metconazole towards F. avenaceum was also confirmed by an additional in vitro experiment on several F. avenaceum and F. graminearum different strains. CONCLUSION: The selective pressure exerted by the extensive use of certain fungicides may influence population dynamics of Fusarium species due to their different sensitivity. © 2020 Society of Chemical Industry.


Asunto(s)
Fusarium , Fungicidas Industriales/farmacología , Hordeum , Enfermedades de las Plantas , Triticum
17.
Int J Food Microbiol ; 322: 108585, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32179333

RESUMEN

A total of 20 dried date samples, chosen as representative among those available on the Perugia (Umbria, Central Italy) market, were analyzed for the possible occurrence of fungal species and related contamination by fungal secondary metabolites. Twenty-six isolates, representative of the total mycobiota, were obtained and morphologically identified as belonging to the genera Aspergillus, Penicillium and Cladosporium. Inside each genus, molecular characterization (by partial sequencing of ITS region and/or ß-tubulin and calmodulin regions for Aspergillus and Penicillium isolates or actin region for Cladosporium isolates) and in vitro mycotoxigenic profile characterization (by LC-MS/MS analysis) showed the presence of the following species: A. flavus, A. tubingensis, P. brevicompactum, P. chrysogenum, P. crustosum, P. glabrum, P. solitum, P. venetum, C. cladosporioides, C. limoniforme and C. halotolerans, with A. tubingensis as the prevalent species and P. crustosum, P. solitum, P. venetum and C. limoniforme first reported here on dates. Date packaging and format showed an effect on the incidence of isolated fungi, with the lowest incidence recovered from whole dates and in hermetic bag packaging. These findings can be useful both for dried dates producers and consumers, guiding them towards choices of packaging and format with a lower risk of mycotoxigenic species presence. However, no fungal metabolites were detected in the dried date samples analyzed, which were therefore regarded as safe for human consumption, underlining the absence of correspondence between fungal isolation and mycotoxin contaminations.


Asunto(s)
Microbiología de Alimentos , Alimentos en Conserva/microbiología , Hongos/aislamiento & purificación , Phoeniceae/microbiología , Aspergillus/clasificación , Aspergillus/genética , Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Cladosporium/clasificación , Cladosporium/genética , Cladosporium/aislamiento & purificación , Cladosporium/metabolismo , Embalaje de Alimentos/métodos , Frutas/microbiología , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Humanos , Italia , Micotoxinas/análisis , Penicillium/clasificación , Penicillium/genética , Penicillium/aislamiento & purificación , Penicillium/metabolismo
18.
Microorganisms ; 8(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053959

RESUMEN

Investigating the in vitro fumonisin biosynthesis and the genetic structure of Fusarium verticillioides populations can provide important insights into the relationships between strains originating from various world regions. In this study, 90 F. verticillioides strains isolated from maize in five Mediterranean countries (Italy, Spain, Tunisia, Egypt and Iran) were analyzed to investigate their ability to in vitro biosynthesize fumonisin B1, fumonisin B2 and fumonisin B3 and to characterize their genetic profile. In general, 80% of the analyzed strains were able to biosynthesize fumonisins (range 0.03-69.84 µg/g). Populations from Italy, Spain, Tunisia and Iran showed a similar percentage of fumonisin producing strains (>90%); conversely, the Egyptian population showed a lower level of producing strains (46%). Significant differences in fumonisin biosynthesis were detected among strains isolated in the same country and among strains isolated from different countries. A portion of the divergent FUM1 gene and of intergenic regions FUM6-FUM7 and FUM7-FUM8 were sequenced to evaluate strain diversity among populations. A high level of genetic uniformity inside the populations analyzed was detected. Apparently, neither geographical origin nor fumonisin production ability were correlated to the genetic diversity of the strain set. However, four strains from Egypt differed from the remaining strains.

19.
Toxins (Basel) ; 12(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028570

RESUMEN

In this study, durum wheat kernels harvested in three climatically different Italian cultivation areas (Emilia Romagna, Umbria and Sardinia) in 2015, were analyzed with a combination of different isolation methods to determine their fungal communities, with a focus on Fusarium head blight (FHB) complex composition, and to detect fungal secondary metabolites in the grains. The genus Alternaria was the main component of durum wheat mycobiota in all investigated regions, with the Central Italian cultivation area showing the highest incidence of this fungal genus and of its secondary metabolites. Fusarium was the second most prevalent genus of the fungal community in all cultivation environments, even if regional differences in species composition were detected. In particular, Northern areas showed the highest Fusarium incidence, followed by Central and then Southern cultivation areas. Focusing on the FHB complex, a predominance of Fusariumpoae, in particular in Northern and Central cultivation areas, was found. Fusariumgraminearum, in the analyzed year, was mainly detected in Emilia Romagna. Because of the highest Fusarium incidence, durum wheat harvested in the Northern cultivation area showed the highest presence of Fusarium secondary metabolites. These results show that durum wheat cultivated in Northern Italy may be subject to a higher FHB infection risk and to Fusarium mycotoxins accumulation.


Asunto(s)
Grano Comestible/microbiología , Hongos , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Biomasa , ADN de Hongos/análisis , Contaminación de Alimentos , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Hongos/metabolismo , Italia , Metabolismo Secundario , Tiempo (Meteorología)
20.
Fungal Biol ; 123(3): 255-266, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30798881

RESUMEN

Fusarium pseudograminearum is an agronomically important fungus, which infects many crop plants, including wheat, where it causes Fusarium crown rot. Like many other fungi, the Fusarium genus produces a wide range of secondary metabolites of which only few have been characterized. Recently a novel gene cluster was discovered in F. pseudograminearum, which encodes production of cytokinin-like metabolites collectively named Fusarium cytokinins. They are structurally similar to plant cytokinins and can activate cytokinin signalling in vitro and in planta. Here, the regulation of Fusarium cytokinin production was analysed in vitro. This revealed that, similar to deoxynivalenol (DON) production in Fusariumgraminearum, cytokinin production can be induced in vitro by specific nitrogen sources in a pH-dependent manner. DON production was also induced in both F. graminearum and F. pseudograminearum in cytokinin-inducing conditions. In addition, microscopic analyses of wheat seedlings infected with a F. pseudograminearum cytokinin reporter strain showed that the fungus specifically induces its cytokinin production in hyphae, which are in close association with the plant, suggestive of a function of Fusarium cytokinins during infection.


Asunto(s)
Citocininas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Fusariosis , Hifa/metabolismo , Plantones/microbiología , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...