Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121626, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944957

RESUMEN

Bidens pilosa frequently forms a symbiotic association with arbuscular mycorrhizal fungi (AMF). This plant species can grow in Pb-polluted soils, accumulating Pb in its tissues. The aims of the study were to determine whether Pb accumulated in the tissues of B. pilosa can be transferred to the soil through AMF and to compare the role of AMF communities that have a history of exposure to the contaminant with those that have never been exposed. The experiment combined plants with and without Pb accumulated in their tissues, and inoculated with AMF collected from the rhizosphere of B. pilosa in soils contaminated and not contaminated with Pb. The results showed that AMF participate in the removal of Pb that had entered the plant and release it into the soil, as evidenced by the presence of Pb in the AMF spores and in the glomalin produced by AMF. We propose that Pb accumulation in AMF spores would be a protection mechanism that interrupts Pb uptake by the plant; however, that mechanism would not be fully exploited in detoxification, whereas the production of Pb-enriched glomalin could be an important detoxification mechanism to eliminate Pb already taken up by plants. AMF with a history of Pb exposure achieved only higher rates of root colonization, while AMF without previous exposure showed higher Pb concentration in the spores and higher glomalin production, and successfully removed Pb from both the roots and aboveground parts of the plant. The use of AMF communities not adapted to Pb may be a more effective option for microbe-mediated phytoremediation methods in which detoxification mechanisms are desirable.

2.
Front Plant Sci ; 13: 1046315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570909

RESUMEN

The genus Nacobbus, known as the false root-knot nematode, is native to the American continent and comprises polyphagous species adapted to a wide range of climatic conditions. Alone or in combination with other biotic and abiotic factors, Nacobbus spp. can cause significant economic yield losses on main food crops such as potato, sugar beet, tomato, pepper and bean, in South and North America. Although the genus distribution is restricted to the American continent, it has quarantine importance and is subject to international legislation to prevent its spread to other regions, such as the European Union. The management of Nacobbus spp. remains unsatisfactory due to the lack of information related to different aspects of its life cycle, survival stages in the soil and in plant material, a rapid and reliable diagnostic method for its detection and the insufficient source of resistant plant genotypes. Due to the high toxicity of chemical nematicides, the search for alternatives has been intensified. Therefore, this review reports findings on the application of environmentally benign treatments to manage Nacobbus spp. Biological control strategies, such as the use of different organisms (mainly bacteria, fungi and entomopathogenic nematodes) and other eco-compatible approaches (such as metabolites, essential oils, plant extracts, phytohormones and amendments), either alone or as part of a combined control strategy, are discussed. Knowledge of potential sources of resistance for genetic improvement for crops susceptible to Nacobbus spp. are also reported. The sustainable strategies outlined here offer immediate benefits, not only to counter the pathogen, but also as good alternatives to improve crop health and growth.

3.
Mycorrhiza ; 29(4): 363-373, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31016370

RESUMEN

The impact of lead (Pb) pollution on native communities of arbuscular mycorrhizal fungi (AMF) was assessed in soil samples from the surroundings of an abandoned Pb smelting factory. To consider the influence of host identity, bulk soil surrounding plant roots soil samples of predominant plant species (Sorghum halepense, Bidens pilosa, and Tagetes minuta) growing in Pb-polluted soils and in an uncontaminated site were selected. Molecular diversity was assessed by sequencing the 18S rDNA region with primers specific to AMF (AMV4.5NF/AMDGR) using Illumina MiSeq. A total of 115 virtual taxa (VT) of AMF were identified in this survey. Plant species did not affect AMF diversity patterns. However, soil Pb content was negatively correlated with VT richness per sample. Paraglomeraceae and Glomeraceae were the predominant families while Acaulosporaceae, Ambisporaceae, Archaeosporaceae, Claroideoglomeraceae, Diversisporaceae, and Gigasporaceae were less abundant. Acaulosporaceae and Glomeraceae were negatively affected by soil Pb, but Paraglomeraceae relative abundance increased under increasing soil Pb content. Overall, 26 indicator taxa were identified; four of them were previously reported in Pb-polluted soils (VT060; VT222; VT004; VT380); and five corresponded to cultured spores of Scutellospora castaneae (VT041), Diversispora spp. and Tricispora nevadensis (VT060), Diversispora epigaea (VT061), Glomus proliferum (VT099), and Gl. indicum (VT222). Even though AMF were present in Pb-polluted soils, community structure was strongly altered via the differential responses of taxonomic groups of AMF to Pb pollution. These taxon-specific differences in tolerance to soil Pb content should be considered for future phytoremediation strategies based on the selection and utilization of native Glomeromycota.


Asunto(s)
Hongos/efectos de los fármacos , Plomo/farmacología , Micorrizas/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/farmacología , Bidens/crecimiento & desarrollo , Bidens/microbiología , Biodiversidad , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/aislamiento & purificación , Suelo/química , Sorghum/crecimiento & desarrollo , Sorghum/microbiología , Tagetes/crecimiento & desarrollo , Tagetes/microbiología
4.
Sci Total Environ ; 643: 238-246, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29936165

RESUMEN

Heavy metal (HM) pollution of soils is one of the most important and unsolved environmental problems affecting the world, with alternative solutions currently being investigated through different approaches. Arbuscular mycorrhizal fungi (AMF) are soil inhabitants that form symbiotic relationships with plants. This alleviates HM toxicity in the host plant, thereby enhancing tolerance. However, the few investigations that have addressed the presence of metals in the fungus structures were performed under experimental conditions, with there being no results reported for Pb. The current study represents a first approximation concerning the capability of spores to accumulate Pb in the AMF community present in a Pb polluted soil under field conditions. Micro X-ray fluorescence was utilized to obtain a direct observation of Pb in spores, and the innovation of total reflection X-ray fluorescence was applied to obtain Pb quantification in spores. The AMF community included species of Ambisporaceae, Archaeosporaceae, Gigasporacea, Glomeraceae and Paraglomeraceae, and was tolerant to high Pb concentrations in soil. Pb accumulation in AMF spores was demonstrated at the community level and corroborated by direct observation of the most abundant spores, which belonged to the Gigasporaceae group. Spore Pb accumulation is possibly dependent on the AMF and host plant species.


Asunto(s)
Plomo/metabolismo , Micorrizas/metabolismo , Contaminantes del Suelo/metabolismo , Monitoreo del Ambiente , Hongos , Glomeromycota , Plomo/análisis , Metales Pesados , Micorrizas/química , Raíces de Plantas , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Esporas Fúngicas
5.
Mol Ecol ; 23(10): 2452-72, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24762095

RESUMEN

The Yungas, a system of tropical and subtropical montane forests on the eastern slopes of the Andes, are extremely diverse and severely threatened by anthropogenic pressure and climate change. Previous mycological works focused on macrofungi (e.g. agarics, polypores) and mycorrhizae in Alnus acuminata forests, while fungal diversity in other parts of the Yungas has remained mostly unexplored. We carried out Ion Torrent sequencing of ITS2 rDNA from soil samples taken at 24 sites along the entire latitudinal extent of the Yungas in Argentina. The sampled sites represent the three altitudinal forest types: the piedmont (400-700 m a.s.l.), montane (700-1500 m a.s.l.) and montane cloud (1500-3000 m a.s.l.) forests. The deep sequence data presented here (i.e. 4 108 126 quality-filtered sequences) indicate that fungal community composition correlates most strongly with elevation, with many fungi showing preference for a certain altitudinal forest type. For example, ectomycorrhizal and root endophytic fungi were most diverse in the montane cloud forests, particularly at sites dominated by Alnus acuminata, while the diversity values of various saprobic groups were highest at lower elevations. Despite the strong altitudinal community turnover, fungal diversity was comparable across the different zonal forest types. Besides elevation, soil pH, N, P, and organic matter contents correlated with fungal community structure as well, although most of these variables were co-correlated with elevation. Our data provide an unprecedented insight into the high diversity and spatial distribution of fungi in the Yungas forests.


Asunto(s)
Biodiversidad , Hongos/clasificación , Microbiología del Suelo , Árboles/microbiología , Alnus/microbiología , Altitud , Argentina , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/genética
6.
Mycologia ; 103(2): 273-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21415289

RESUMEN

The arbuscular mycorrhizal fungal (AMF) communities from the Yungas forests of Argentina were studied. The AMF species present in the rhizosphere of some dominant native plants (one tree: Alnus acuminata; three herbaceous species: Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub: Sambucus peruviana) from two sites (Quebrada del Portugués and Narváez Range) of the Yungas forests were isolated, identified and quantified during the four seasons of the year. Twenty-two AMF morphotaxa were found. Spore density of some AMF species at each site varied among seasons. The genera that most contributed to the biodiversity index were Acaulospora for Quebrada del Portugués and Glomus for Narváez Range. High diversity values were observed in the Yungas forests, particularly in the spring (rainy season). We concluded AMF differed in species composition and seasonal sporulation dynamics in the Yungas forests.


Asunto(s)
Hongos/aislamiento & purificación , Micorrizas/aislamiento & purificación , Árboles/microbiología , Argentina , Biodiversidad , Hongos/clasificación , Hongos/citología , Micorrizas/clasificación , Micorrizas/citología , Rizosfera , Estaciones del Año , Esporas Fúngicas/clasificación , Esporas Fúngicas/citología , Esporas Fúngicas/aislamiento & purificación
7.
Mycologia ; 101(5): 612-21, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19750940

RESUMEN

In Argentina the Yungas forests are among the ecosystems most affected by human activity, with loss of biodiversity. To assess the arbuscular mycorrhizal (AM) colonization and the arbuscular mycorrhizal fungi (AMF) spore numbers in these ecosystems, the roots of the most dominant native plants (one tree, Alnus acuminata; three herbaceous, Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub, Sambucus peruviana) were studied throughout the year from two sites of Yungas forests. Assessments of mycorrhizal colonization (percent root length, intraradical structures) were made by washing and staining the roots. Soil samples of each plant species were pooled and subsamples were obtained to determine AM spore numbers. The herbaceous species formed both Arum- and Paris-type morphologies, whereas the tree and the shrub species formed respectively single structural types of Arum- and Paris-type. AM colonization, intraradical fungi structures and AMF spore numbers displayed variation in species, seasons and sites. D. indica showed the highest AM colonization, whereas the highest spore numbers was observed in the rhizosphere of A. acuminata. No correlation was observed between spore numbers and root length percentage colonized by AM fungi. Results of this study showed that Alnus acuminata is facultatively AM. The AM colonization, intraradical fungi structures and AMF spore numbers varied in species depending on phenological, climatic and edaphic conditions.


Asunto(s)
Alnus/microbiología , Hongos , Magnoliopsida/microbiología , Micorrizas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Árboles , Argentina , Biodiversidad , Ecosistema , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Magnoliopsida/clasificación , Rosaceae/microbiología , Estaciones del Año , Suelo/análisis , Microbiología del Suelo , Esporas Fúngicas/aislamiento & purificación , Trifolium/microbiología
8.
Mycologia ; 97(3): 598-604, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16392248

RESUMEN

Field studies in Argentina's Yunga District revealed Alpova austroalnicola sp. nov., a hypogeous fungus associated with Alnus acuminata ssp. acuminata. Morphological and molecular studies based on amplification and sequencing of the nuclear LSU rDNA gene showed its unique identity within Alpova. Related genera included in the analyses were Boletus edulis, Rhizopogon spp., Suillus luteus and Truncocolumella citrina. Additional observations of animal diggings around the sites and microscopic examination of fecal pellets of the nine-banded armadillo (Dasypus novemcinctus novemcinctus) indicate A. austroalnicola is consumed and its spores dispersed by animals.


Asunto(s)
Basidiomycota/citología , Basidiomycota/genética , Ecosistema , Alnus/microbiología , Animales , Argentina , Armadillos/microbiología , Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico , Heces/microbiología , Microscopía , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...