Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256937

RESUMEN

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Asunto(s)
Interferón Tipo I , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Adenosina Trifosfatasas/genética , Drosophila melanogaster , Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica
2.
Am J Med Genet A ; 191(2): 469-478, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36426740

RESUMEN

The non-POU domain-containing octamer-binding (NONO) protein is involved in multiple steps of gene regulation such as RNA metabolism and DNA repair. Hemizygous pathogenic variants in the NONO gene were confirmed to cause a rare X-linked syndromic disorder. Through our in-house diagnostics and subsequent matchmaking, we identified six unrelated male individuals with pathogenic or likely pathogenic NONO variants. For a detailed comparison, we reviewed all published characterizations of the NONO-associated disorder. The combined cohort consists of 16 live-born males showing developmental delay, corpus callosum anomalies, non-compaction cardiomyopathy and relative macrocephaly as leading symptoms. Seven prenatal literature cases were characterized by cardiac malformations. In this study, we extend the phenotypic spectrum through two more cases with epilepsy as well as two more cases with hematologic anomalies. By RNA expression analysis and structural modeling of a new in-frame splice deletion, we reinforce loss-of-function as the pathomechanism for the NONO-associated syndromic disorder.


Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Humanos , Masculino , Proteínas de Unión al ADN/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Cardiomiopatías/genética , Genes Ligados a X , ARN , Proteínas de Unión al ARN/genética
4.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417889

RESUMEN

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genómica/métodos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación/genética , Fenotipo
5.
Hum Genet ; 140(4): 681-690, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389145

RESUMEN

PURPOSE: Nuclear receptor binding SET domain protein 1, NSD1, encodes a histone methyltransferase H3K36. NSD1 is responsible for the phenotype of the reciprocal 5q35.2q35.3 microdeletion-microduplication syndromes. We expand the phenotype and demonstrate the functional role of NSD1 in microduplication 5q35 syndrome. METHODS: Through an international collaboration, we report nine new patients, contributing to the emerging phenotype, highlighting psychiatric phenotypes in older affected individuals. Focusing specifically on the undergrowth phenotype, we have modeled the effects of Mes-4/NSD overexpression in Drosophila melanogaster. RESULTS: The individuals (including a family) from diverse backgrounds with duplications ranging in size from 0.6 to 4.5 Mb, have a consistent undergrowth phenotype. Mes-4 overexpression in the developing wing causes undergrowth, increased H3K36 methylation, and increased apoptosis. We demonstrate that altering the levels of insulin receptor (IR) rescues the apoptosis and the wing undergrowth phenotype, suggesting changes in mTOR pathway signaling. Leucine supplementation rescued Mes-4/NSD induced cell death, demonstrating decreased mTOR signaling caused by NSD1. CONCLUSION: Given that we show mTOR inhibition as a likely mechanism and amelioration of the phenotype by leucine supplementation in a fly model, we suggest further studies should evaluate the therapeutic potential of leucine or branched chain amino acids as an adjunct possible treatment to ameliorate human growth and psychiatric phenotypes and propose inclusion of 5q35-microduplication as part of the differential diagnosis for children and adults with delayed bone age, short stature, microcephaly, developmental delay, and psychiatric phenotypes.


Asunto(s)
Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 5 , Duplicación de Gen , N-Metiltransferasa de Histona-Lisina/genética , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Adulto , Animales , Caspasas/metabolismo , Muerte Celular , Niño , Preescolar , Regulación hacia Abajo , Drosophila melanogaster , Femenino , Humanos , Leucina/metabolismo , Leucina/farmacología , Masculino , Linaje , Fenotipo , Transducción de Señal , Adulto Joven
6.
Am J Med Genet A ; 185(1): 213-218, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044030

RESUMEN

Glycosylation is a critical post/peri-translational modification required for the appropriate development and function of the immune system. As an example, abnormalities in glycosylation can cause antibody deficiency and reduced lymphocyte signaling, although the phenotype can be complex given the diverse roles of glycosylation. Human MGAT2 encodes N-acetylglucosaminyltransferase II, which is a critical enzyme in the processing of oligomannose to complex N-glycans. Complex N-glycans are essential for immune system functionality, but only one individual with MGAT2-CDG has been described to have an abnormal immunologic evaluation. MGAT2-CDG (CDG-IIa) is a congenital disorder of glycosylation (CDG) associated with profound global developmental disability, hypotonia, early onset epilepsy, and other multisystem manifestations. Here, we report a 4-year old female with MGAT2-CDG due to a novel homozygous pathogenic variant in MGAT2, a 4-base pair deletion, c.1006_1009delGACA. In addition to clinical features previously described in MGAT2-CDG, she experienced episodic asystole, persistent hypogammaglobulinemia, and defective ex vivo mitogen and antigen proliferative responses, but intact specific vaccine antibody titers. Her infection history has been mild despite the testing abnormalities. We compare this patient to the 15 previously reported patients in the literature, thus expanding both the genotypic and phenotypic spectrum for MGAT2-CDG.


Asunto(s)
Arritmias Cardíacas/genética , Trastornos Congénitos de Glicosilación/genética , Enfermedades del Sistema Inmune/genética , N-Acetilglucosaminiltransferasas/genética , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/inmunología , Arritmias Cardíacas/patología , Preescolar , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/inmunología , Trastornos Congénitos de Glicosilación/patología , Femenino , Glicosilación , Homocigoto , Humanos , Enfermedades del Sistema Inmune/complicaciones , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Mutación/genética , N-Acetilglucosaminiltransferasas/inmunología , Fenotipo
7.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205886

RESUMEN

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Asunto(s)
Encéfalo/anomalías , Encéfalo/patología , Enfermedades en Gemelos/patología , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto , Enfermedades en Gemelos/genética , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Literatura de Revisión como Asunto
8.
Am J Med Genet A ; 182(7): 1576-1591, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32500973

RESUMEN

More than 50 individuals with activating variants in the receptor tyrosine kinase PDGFRB have been reported, separated based on clinical features into solitary myofibromas, infantile myofibromatosis, Penttinen syndrome with premature aging and osteopenia, Kosaki overgrowth syndrome, and fusiform aneurysms. Despite their descriptions as distinct clinical entities, review of previous reports demonstrates substantial phenotypic overlap. We present a case series of 12 patients with activating variants in PDGFRB and review of the literature. We describe five patients with PDGFRB activating variants whose clinical features overlap multiple diagnostic entities. Seven additional patients from a large family had variable expressivity and late-onset disease, including adult onset features and two individuals with sudden death. Three patients were treated with imatinib and had robust and rapid response, including the first two reported infants with multicentric myofibromas treated with imatinib monotherapy and one with a recurrent p.Val665Ala (Penttinen) variant. Along with previously reported individuals, our cohort suggests infants and young children had few abnormal features, while older individuals had multiple additional features, several of which appeared to worsen with advancing age. Our analysis supports a diagnostic entity of a spectrum disorders due to activating variants in PDGFRB. Differences in reported phenotypes can be dramatic and correlate with advancing age, genotype, and to mosaicism in some individuals.


Asunto(s)
Mesilato de Imatinib/uso terapéutico , Leucoencefalopatías/etiología , Miofibromatosis/congénito , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Adolescente , Adulto , Aneurisma/genética , Niño , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Leucoencefalopatías/tratamiento farmacológico , Leucoencefalopatías/genética , Masculino , Miofibromatosis/tratamiento farmacológico , Miofibromatosis/etiología , Miofibromatosis/genética , Linaje , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32197074

RESUMEN

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Asunto(s)
Discapacidades del Desarrollo/genética , Variación Genética/genética , Leucoencefalopatías/genética , Malformaciones del Sistema Nervioso/genética , eIF-2 Quinasa/genética , Adolescente , Ataxia/genética , Niño , Preescolar , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Lactante , Masculino , Sustancia Blanca/patología
10.
Genet Med ; 22(3): 538-546, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31723249

RESUMEN

PURPOSE: Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292). METHODS: We ascertained a cohort of 28 families with ID due to putatively pathogenic ZNF292 variants that were identified via targeted and exome sequencing. Available data were analyzed to characterize the canonical phenotype and examine genotype-phenotype relationships. RESULTS: Probands presented with ID as well as a spectrum of neurodevelopmental features including ASD, among others. All ZNF292 variants were de novo, except in one family with dominant inheritance. ZNF292 encodes a highly conserved zinc finger protein that acts as a transcription factor and is highly expressed in the developing human brain supporting its critical role in neurodevelopment. CONCLUSION: De novo and dominantly inherited variants in ZNF292 are associated with a range of neurodevelopmental features including ID and ASD. The clinical spectrum is broad, and most individuals present with mild to moderate ID with or without other syndromic features. Our results suggest that variants in ZNF292 are likely a recurrent cause of a neurodevelopmental disorder manifesting as ID with or without ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Niño , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/patología , Neuroimagen/métodos , Secuenciación del Exoma/métodos
11.
Am J Med Genet A ; 179(8): 1543-1546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207089

RESUMEN

1p36 deletion syndrome is a well-described condition with a recognizable phenotype, including cognitive impairment, seizures, and structural brain anomalies such as periventricular leukomalacia (PVL). In a large series of these individuals by Battaglia et al., "birth history was notable in 50% of the cases for varying degrees of perinatal distress." Given the potential for perinatal distress, seizures and PVL, we questioned if this disorder has clinical overlap with hypoxic ischemic encephalopathy (HIE). We reviewed the medical records of 69 individuals with 1p36 deletion to clarify the perinatal phenotype of this disorder and determine if there is evidence of perinatal distress and/or hypoxic injury. Our data provides evidence that these babies have signs of perinatal distress. The majority (59% term; 75% preterm) needed resuscitation and approximately 18% had cardiac arrest. Most had abnormal brain imaging (84% term; 73% preterm) with abnormal white matter findings in over half of patients. PVL or suggestion of "hypoxic insult" was present in 18% of term and 45% of preterm patients. In conclusion, individuals with 1p36 deletion have evidence of perinatal distress, white matter changes, and seizures, which can mimic HIE but are likely related to their underlying chromosome disorder.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Hipoxia-Isquemia Encefálica/diagnóstico , Fenotipo , Distrés Psicológico , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Diagnóstico Diferencial , Femenino , Humanos , Recién Nacido , Masculino , Embarazo
12.
Ann Neurol ; 86(2): 181-192, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31177578

RESUMEN

OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.


Asunto(s)
Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Mutación con Ganancia de Función/genética , Canal de Potasio KCNQ3/genética , Secuencia de Aminoácidos , Niño , Preescolar , Variación Genética/genética , Humanos , Canal de Potasio KCNQ3/química , Masculino , Estructura Secundaria de Proteína , Adulto Joven
13.
Genet Med ; 21(11): 2644-2649, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31147633

RESUMEN

PURPOSE: Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder characterized by lateralized overgrowth, macroglossia, abdominal wall defects, congenital hyperinsulinism, and predisposition to embryonal tumors. One of the molecular etiologies underlying BWS is paternal uniparental isodisomy of chromosome 11p15.5 (pUPD11). About 8% of pUPD11 cases are due to genome-wide paternal uniparental isodisomy (GWpUPD). About 30 cases of live-born patients with GWpUPD have been described, most of whom were mosaic and female. We present male patients with BWS due to GWpUPD, elucidate the underlying mechanism, and make recommendations for management. METHODS: Three male patients with GWpUPD underwent clinical and molecular evaluation by single-nucleotide polymorphism (SNP) microarrays in different tissues. Previously published cases of GWpUPD were reviewed. RESULTS: SNP microarray demonstrated a GWpUPD cell population with sex chromosomes XX and biparental cell population with sex chromosomes XY, consistent with dispermic androgenetic chimerism. CONCLUSION: SNP microarray is necessary to distinguish GWpUPD cases and the underlying mechanisms. The percentage of GWpUPD cell population within a specific tissue type correlated with the amount of tissue dysplasia. Males with BWS due to GWpUPD are important to distinguish from other molecular etiologies because the mechanism indicates risk for germ cell tumors and autosomal recessive diseases in addition to other BWS features.


Asunto(s)
Síndrome de Beckwith-Wiedemann/etiología , Disomía Uniparental/genética , Quimerismo , Cromosomas Humanos Par 11/genética , Metilación de ADN/genética , Impresión Genómica/genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Disomía Uniparental/diagnóstico , Disomía Uniparental/fisiopatología
14.
Breastfeed Med ; 14(4): 236-242, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30864830

RESUMEN

Objective: Determine if maternal obesity increases use of medically indicated or elective formula in the context of a Baby-Friendly Hospital with high prevalence of obesity. Study Design: We conducted a secondary analysis of mothers who initiated breastfeeding of their term, singleton infant born at a Baby-Friendly community hospital in 2016. We defined medically indicated as formula given per physician order; and elective as formula given per maternal request. We used multinomial logistic regression to determine the odds ratio (OR) and 95% confidence interval (95% CI) for medically indicated and elective formula (each versus exclusive breastfeeding) by obesity status. We adjusted for available covariates and mediating conditions that may be exacerbated by obesity. Results: A total of 1,245 mothers met inclusion criteria, of which 41% were obese. Exclusive breastfeeding, medically indicated formula, and elective formula were 84% versus 70%, 5% versus 12%, and 11% versus 18%, in nonobese versus obese women, respectively. After adjusting for covariates, obesity significantly increased the risk for medically indicated (OR 2.6 [95% CI 1.7-4.1]) and elective (OR 2.0 [95% CI 1.5-2.8]) formula. After additionally adjusting for conditions exacerbated by obesity, the risk of medically indicated formula was attenuated by 48% (OR 1.7 [95% CI 1.02-2.7]), and there was little attenuation of the risk of elective formula (OR 1.8 [95% CI 1.3-2.6]). Conclusions: In a setting with high obesity prevalence and strong support for exclusive breastfeeding, obesity accounted for 36% of medically indicated formula and 21% of elective formula use. In this era of globally increasing maternal obesity prevalence, there is an urgent need to develop successful strategies for supporting breastfeeding that goes above and beyond standard Baby-Friendly approaches.


Asunto(s)
Lactancia Materna/estadística & datos numéricos , Promoción de la Salud , Hospitales , Fórmulas Infantiles/estadística & datos numéricos , Obesidad/epidemiología , Adulto , Femenino , Adhesión a Directriz , Humanos , Recién Nacido , Modelos Logísticos , Masculino , Ohio/epidemiología , Embarazo , Factores Socioeconómicos , Adulto Joven
15.
Am J Med Genet A ; 176(4): 925-935, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436146

RESUMEN

SATB2-associated syndrome (SAS) is an autosomal dominant disorder characterized by significant neurodevelopmental disabilities with limited to absent speech, behavioral issues, and craniofacial anomalies. Previous studies have largely been restricted to case reports and small series without in-depth phenotypic characterization or genotype-phenotype correlations. Seventy two study participants were identified as part of the SAS clinical registry. Individuals with a molecularly confirmed diagnosis of SAS were referred after clinical diagnostic testing. In this series we present the most comprehensive phenotypic and genotypic characterization of SAS to date, including prevalence of each clinical feature, neurodevelopmental milestones, and when available, patient management. We confirm that the most distinctive features are neurodevelopmental delay with invariably severely limited speech, abnormalities of the palate (cleft or high-arched), dental anomalies (crowding, macrodontia, abnormal shape), and behavioral issues with or without bone or brain anomalies. This comprehensive clinical characterization will help clinicians with the diagnosis, counseling and management of SAS and help provide families with anticipatory guidance.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Fenotipo , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Facies , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Patrón de Herencia , Masculino , Polimorfismo de Nucleótido Simple , Síndrome , Adulto Joven
16.
Genet Med ; 20(2): 169-171, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29323668

RESUMEN

Disclaimer: This Points to Consider document is designed as an educational resource to provide best practices for medical genetic clinicians, laboratories, and journals regarding the provision, publication, and dissemination of patient phenotypes in the context of genomic testing, clinical genetic practice, and research. While the goal of the document is the improvement of patient care, the considerations and practices described should not be considered inclusive of all proper considerations and practices or exclusive of others that are reasonably directed to obtaining the same goal. In determining the value of any practice, clinicians, laboratories, and journals should apply their own professional standards and judgment to the specific circumstances presented.The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the authors' affiliated institutions.


Asunto(s)
Pruebas Genéticas/normas , Genética Médica/normas , Genómica/normas , Difusión de la Información , Rol Profesional , Publicaciones/normas , Pruebas Genéticas/métodos , Genética Médica/métodos , Genómica/métodos , Humanos
17.
Genome Med ; 9(1): 83, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934986

RESUMEN

BACKGROUND: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exones , Enfermedades Genéticas Congénitas , Estudios de Cohortes , Genoma Humano , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Estudios Retrospectivos , Serina-Treonina Quinasa 3 , Factores de Transcripción/genética , Secuenciación Completa del Genoma
18.
Curr Pharm Des ; 23(27): 4057-4065, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-28215154

RESUMEN

Salivary glands produce a bicarbonate-rich fluid containing digestive and protective proteins and other components to be delivered into the gastrointestinal tract. Its function is under strict control of the autonomic nervous system. Salivary electrolyte and fluid secretion are primarily controlled by parasympathetic activity, while protein secretion is primaily triggered by sympathetic stimulation. Stress activates the hypothalamic - pituitary - adrenal axis. The peripheral limb of this axis is the efferent sympathetic/adrenomedullary system. Stress reaction, even if it is sustained for long, does not cause obvious damage to salivary glands. However, stress induces dramatic changes in the constituents of secreted saliva. Since salivary protein secretion is strongly dependent on sympathetic control, changes in saliva can be utilized as sensitive stress indicators. Some of the secreted compounds are known for their protective effect in the mouth and the gut, while others may just pass through the glands from blood plasma because of their chemical nature and the presence of transcellular salivary transporting systems. Indeed, most compounds that appear in blood circulation can also be identified in saliva, although at different concentrations. This work overviews the presently recognized salivary stress biosensors, such as amylase, cortisol, heat shock proteins and other compounds. It also demonstrates that saliva is widely recognised as a diagnostic tool for early and sensitive discovery of salivary and systemic conditions and disorders. At present it may be too early to introduce most of these biomarkers in daily routine diagnostic applications, but advances in salivary biomarker standardisation should permit their wide-range utilization in the future including safe, reliable and non-invasive estimation of acute and chronic stress levels in patients.


Asunto(s)
Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Glándulas Salivales/metabolismo , Estrés Fisiológico/fisiología , Humanos
19.
Medicine (Baltimore) ; 96(50): e9256, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29390364

RESUMEN

Feeding intolerance in Prader-Willi syndrome (PWS) infants is well-recognized, but their swallow physiology is not well understood. Swallow dysfunction increases risks of respiratory compromise and choking, which have a high incidence in PWS. To investigate swallow pathology in PWS infants we undertook a retrospective review of videofluoroscopic swallow studies (VFSS) in infants with PWS seen at our institution. We hypothesize that VFSS will characterize swallow pathology suspected by clinical observation during a feeding evaluation and may help determine feeding safety in these infants.Retrospective review of 23 VFSS on 10 PWS infants (average age 9.7 ±â€Š8.4 months; range 3 weeks-29 months). Logistic regression models evaluated associations between gender, genetic subtype, and growth hormone (GH) use on aspiration incidence. Polysomnographic (PSG) studies conducted on the same participant ±1 year from VFSS were examined to characterize respiratory abnormalities.There was a high rate of swallowing dysfunction (pharyngeal residue 71%, aspiration events 87%) and disordered sleep. All aspiration events were silent. There were no differences in rates of aspiration for gender, genetic subtype, or GH use.A high incidence of aspiration was identified indicating swallow dysfunction may frequently be present in infants with PWS. Comprehensive evaluation of feeding and swallowing is essential and requires a multidisciplinary approach. Providers should recognize risk factors for swallow dysfunction and consider a multidisciplinary approach to guide decision making and optimize feeding safety in PWS.


Asunto(s)
Trastornos de Deglución/fisiopatología , Síndrome de Prader-Willi/fisiopatología , Aspiración Respiratoria/diagnóstico por imagen , Aspiración Respiratoria/fisiopatología , Preescolar , Femenino , Fluoroscopía , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos , Factores de Riesgo , Grabación en Video
20.
J Invest Dermatol ; 136(8): 1681-1691, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27094592

RESUMEN

The wide range in human skin color results from varying levels of the pigment melanin. Genetic mechanisms underlying coloration differences have been explored, but identified genes do not account for all variation seen in the skin color spectrum. Post-transcriptional and post-translational regulation of factors that determine skin color, including melanin synthesis in epidermal melanocytes, melanosome transfer to keratinocytes, and melanosome degradation, is also critical for pigmentation. We therefore investigated proteins that are differentially expressed in melanocytes derived from either white or African American skin. Two-dimensional gel electrophoresis and mass spectrometry demonstrated that heat shock protein 70-1A (Hsp70-1A) protein levels were significantly higher in African American melanocytes compared with white melanocytes. Hsp70-1A expression significantly correlated with levels of tyrosinase, the rate-limiting melanogenic enzyme, consistent with a proposed role for Hsp70 family members in tyrosinase post-translational modification. In addition, pharmacologic inhibition and small interfering RNA-mediated downregulation of Hsp70-1A correlated with pigmentation changes in cultured melanocytes, modified human skin substitutes, and ex vivo skin. Furthermore, Hsp70-1A inhibition led to increased autophagy-mediated melanosome degradation in keratinocytes. Our data thus reveal that epidermal Hsp70-1A contributes to the diversity of skin color by regulating the amount of melanin synthesized in melanocytes and modulating autophagic melanosome degradation in keratinocytes.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Pigmentación de la Piel , Piel/metabolismo , Negro o Afroamericano , Electroforesis en Gel Bidimensional , Epidermis/metabolismo , Femenino , Perfilación de la Expresión Génica , Variación Genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Espectrometría de Masas , Melanocitos/citología , Melanosomas/metabolismo , Fenotipo , Pigmentación/fisiología , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...