Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256937

RESUMEN

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Asunto(s)
Interferón Tipo I , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Adenosina Trifosfatasas/genética , Drosophila melanogaster , Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica
2.
Am J Med Genet A ; 191(2): 469-478, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36426740

RESUMEN

The non-POU domain-containing octamer-binding (NONO) protein is involved in multiple steps of gene regulation such as RNA metabolism and DNA repair. Hemizygous pathogenic variants in the NONO gene were confirmed to cause a rare X-linked syndromic disorder. Through our in-house diagnostics and subsequent matchmaking, we identified six unrelated male individuals with pathogenic or likely pathogenic NONO variants. For a detailed comparison, we reviewed all published characterizations of the NONO-associated disorder. The combined cohort consists of 16 live-born males showing developmental delay, corpus callosum anomalies, non-compaction cardiomyopathy and relative macrocephaly as leading symptoms. Seven prenatal literature cases were characterized by cardiac malformations. In this study, we extend the phenotypic spectrum through two more cases with epilepsy as well as two more cases with hematologic anomalies. By RNA expression analysis and structural modeling of a new in-frame splice deletion, we reinforce loss-of-function as the pathomechanism for the NONO-associated syndromic disorder.


Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Humanos , Masculino , Proteínas de Unión al ADN/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Cardiomiopatías/genética , Genes Ligados a X , ARN , Proteínas de Unión al ARN/genética
4.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417889

RESUMEN

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genómica/métodos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación/genética , Fenotipo
5.
Am J Med Genet A ; 185(1): 213-218, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33044030

RESUMEN

Glycosylation is a critical post/peri-translational modification required for the appropriate development and function of the immune system. As an example, abnormalities in glycosylation can cause antibody deficiency and reduced lymphocyte signaling, although the phenotype can be complex given the diverse roles of glycosylation. Human MGAT2 encodes N-acetylglucosaminyltransferase II, which is a critical enzyme in the processing of oligomannose to complex N-glycans. Complex N-glycans are essential for immune system functionality, but only one individual with MGAT2-CDG has been described to have an abnormal immunologic evaluation. MGAT2-CDG (CDG-IIa) is a congenital disorder of glycosylation (CDG) associated with profound global developmental disability, hypotonia, early onset epilepsy, and other multisystem manifestations. Here, we report a 4-year old female with MGAT2-CDG due to a novel homozygous pathogenic variant in MGAT2, a 4-base pair deletion, c.1006_1009delGACA. In addition to clinical features previously described in MGAT2-CDG, she experienced episodic asystole, persistent hypogammaglobulinemia, and defective ex vivo mitogen and antigen proliferative responses, but intact specific vaccine antibody titers. Her infection history has been mild despite the testing abnormalities. We compare this patient to the 15 previously reported patients in the literature, thus expanding both the genotypic and phenotypic spectrum for MGAT2-CDG.


Asunto(s)
Arritmias Cardíacas/genética , Trastornos Congénitos de Glicosilación/genética , Enfermedades del Sistema Inmune/genética , N-Acetilglucosaminiltransferasas/genética , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/inmunología , Arritmias Cardíacas/patología , Preescolar , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/inmunología , Trastornos Congénitos de Glicosilación/patología , Femenino , Glicosilación , Homocigoto , Humanos , Enfermedades del Sistema Inmune/complicaciones , Enfermedades del Sistema Inmune/inmunología , Enfermedades del Sistema Inmune/patología , Mutación/genética , N-Acetilglucosaminiltransferasas/inmunología , Fenotipo
6.
Am J Med Genet A ; 182(7): 1576-1591, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32500973

RESUMEN

More than 50 individuals with activating variants in the receptor tyrosine kinase PDGFRB have been reported, separated based on clinical features into solitary myofibromas, infantile myofibromatosis, Penttinen syndrome with premature aging and osteopenia, Kosaki overgrowth syndrome, and fusiform aneurysms. Despite their descriptions as distinct clinical entities, review of previous reports demonstrates substantial phenotypic overlap. We present a case series of 12 patients with activating variants in PDGFRB and review of the literature. We describe five patients with PDGFRB activating variants whose clinical features overlap multiple diagnostic entities. Seven additional patients from a large family had variable expressivity and late-onset disease, including adult onset features and two individuals with sudden death. Three patients were treated with imatinib and had robust and rapid response, including the first two reported infants with multicentric myofibromas treated with imatinib monotherapy and one with a recurrent p.Val665Ala (Penttinen) variant. Along with previously reported individuals, our cohort suggests infants and young children had few abnormal features, while older individuals had multiple additional features, several of which appeared to worsen with advancing age. Our analysis supports a diagnostic entity of a spectrum disorders due to activating variants in PDGFRB. Differences in reported phenotypes can be dramatic and correlate with advancing age, genotype, and to mosaicism in some individuals.


Asunto(s)
Mesilato de Imatinib/uso terapéutico , Leucoencefalopatías/etiología , Miofibromatosis/congénito , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Adolescente , Adulto , Aneurisma/genética , Niño , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Leucoencefalopatías/tratamiento farmacológico , Leucoencefalopatías/genética , Masculino , Miofibromatosis/tratamiento farmacológico , Miofibromatosis/etiología , Miofibromatosis/genética , Linaje , Inhibidores de Proteínas Quinasas/uso terapéutico
7.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32197074

RESUMEN

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Asunto(s)
Discapacidades del Desarrollo/genética , Variación Genética/genética , Leucoencefalopatías/genética , Malformaciones del Sistema Nervioso/genética , eIF-2 Quinasa/genética , Adolescente , Ataxia/genética , Niño , Preescolar , Femenino , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Lactante , Masculino , Sustancia Blanca/patología
8.
Am J Med Genet A ; 179(8): 1543-1546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207089

RESUMEN

1p36 deletion syndrome is a well-described condition with a recognizable phenotype, including cognitive impairment, seizures, and structural brain anomalies such as periventricular leukomalacia (PVL). In a large series of these individuals by Battaglia et al., "birth history was notable in 50% of the cases for varying degrees of perinatal distress." Given the potential for perinatal distress, seizures and PVL, we questioned if this disorder has clinical overlap with hypoxic ischemic encephalopathy (HIE). We reviewed the medical records of 69 individuals with 1p36 deletion to clarify the perinatal phenotype of this disorder and determine if there is evidence of perinatal distress and/or hypoxic injury. Our data provides evidence that these babies have signs of perinatal distress. The majority (59% term; 75% preterm) needed resuscitation and approximately 18% had cardiac arrest. Most had abnormal brain imaging (84% term; 73% preterm) with abnormal white matter findings in over half of patients. PVL or suggestion of "hypoxic insult" was present in 18% of term and 45% of preterm patients. In conclusion, individuals with 1p36 deletion have evidence of perinatal distress, white matter changes, and seizures, which can mimic HIE but are likely related to their underlying chromosome disorder.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Hipoxia-Isquemia Encefálica/diagnóstico , Fenotipo , Distrés Psicológico , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Diagnóstico Diferencial , Femenino , Humanos , Recién Nacido , Masculino , Embarazo
9.
Ann Neurol ; 86(2): 181-192, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31177578

RESUMEN

OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.


Asunto(s)
Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Mutación con Ganancia de Función/genética , Canal de Potasio KCNQ3/genética , Secuencia de Aminoácidos , Niño , Preescolar , Variación Genética/genética , Humanos , Canal de Potasio KCNQ3/química , Masculino , Estructura Secundaria de Proteína , Adulto Joven
10.
Genet Med ; 21(11): 2644-2649, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31147633

RESUMEN

PURPOSE: Beckwith-Wiedemann syndrome (BWS) is a human genomic imprinting disorder characterized by lateralized overgrowth, macroglossia, abdominal wall defects, congenital hyperinsulinism, and predisposition to embryonal tumors. One of the molecular etiologies underlying BWS is paternal uniparental isodisomy of chromosome 11p15.5 (pUPD11). About 8% of pUPD11 cases are due to genome-wide paternal uniparental isodisomy (GWpUPD). About 30 cases of live-born patients with GWpUPD have been described, most of whom were mosaic and female. We present male patients with BWS due to GWpUPD, elucidate the underlying mechanism, and make recommendations for management. METHODS: Three male patients with GWpUPD underwent clinical and molecular evaluation by single-nucleotide polymorphism (SNP) microarrays in different tissues. Previously published cases of GWpUPD were reviewed. RESULTS: SNP microarray demonstrated a GWpUPD cell population with sex chromosomes XX and biparental cell population with sex chromosomes XY, consistent with dispermic androgenetic chimerism. CONCLUSION: SNP microarray is necessary to distinguish GWpUPD cases and the underlying mechanisms. The percentage of GWpUPD cell population within a specific tissue type correlated with the amount of tissue dysplasia. Males with BWS due to GWpUPD are important to distinguish from other molecular etiologies because the mechanism indicates risk for germ cell tumors and autosomal recessive diseases in addition to other BWS features.


Asunto(s)
Síndrome de Beckwith-Wiedemann/etiología , Disomía Uniparental/genética , Quimerismo , Cromosomas Humanos Par 11/genética , Metilación de ADN/genética , Impresión Genómica/genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Disomía Uniparental/diagnóstico , Disomía Uniparental/fisiopatología
11.
Am J Med Genet A ; 176(4): 925-935, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29436146

RESUMEN

SATB2-associated syndrome (SAS) is an autosomal dominant disorder characterized by significant neurodevelopmental disabilities with limited to absent speech, behavioral issues, and craniofacial anomalies. Previous studies have largely been restricted to case reports and small series without in-depth phenotypic characterization or genotype-phenotype correlations. Seventy two study participants were identified as part of the SAS clinical registry. Individuals with a molecularly confirmed diagnosis of SAS were referred after clinical diagnostic testing. In this series we present the most comprehensive phenotypic and genotypic characterization of SAS to date, including prevalence of each clinical feature, neurodevelopmental milestones, and when available, patient management. We confirm that the most distinctive features are neurodevelopmental delay with invariably severely limited speech, abnormalities of the palate (cleft or high-arched), dental anomalies (crowding, macrodontia, abnormal shape), and behavioral issues with or without bone or brain anomalies. This comprehensive clinical characterization will help clinicians with the diagnosis, counseling and management of SAS and help provide families with anticipatory guidance.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Fenotipo , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Facies , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Patrón de Herencia , Masculino , Polimorfismo de Nucleótido Simple , Síndrome , Adulto Joven
12.
Genet Med ; 20(2): 169-171, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29323668

RESUMEN

Disclaimer: This Points to Consider document is designed as an educational resource to provide best practices for medical genetic clinicians, laboratories, and journals regarding the provision, publication, and dissemination of patient phenotypes in the context of genomic testing, clinical genetic practice, and research. While the goal of the document is the improvement of patient care, the considerations and practices described should not be considered inclusive of all proper considerations and practices or exclusive of others that are reasonably directed to obtaining the same goal. In determining the value of any practice, clinicians, laboratories, and journals should apply their own professional standards and judgment to the specific circumstances presented.The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the authors' affiliated institutions.


Asunto(s)
Pruebas Genéticas/normas , Genética Médica/normas , Genómica/normas , Difusión de la Información , Rol Profesional , Publicaciones/normas , Pruebas Genéticas/métodos , Genética Médica/métodos , Genómica/métodos , Humanos
13.
Genome Med ; 9(1): 83, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28934986

RESUMEN

BACKGROUND: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exones , Enfermedades Genéticas Congénitas , Estudios de Cohortes , Genoma Humano , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Proteínas Serina-Treonina Quinasas/genética , Estudios Retrospectivos , Serina-Treonina Quinasa 3 , Factores de Transcripción/genética , Secuenciación Completa del Genoma
14.
Medicine (Baltimore) ; 96(50): e9256, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29390364

RESUMEN

Feeding intolerance in Prader-Willi syndrome (PWS) infants is well-recognized, but their swallow physiology is not well understood. Swallow dysfunction increases risks of respiratory compromise and choking, which have a high incidence in PWS. To investigate swallow pathology in PWS infants we undertook a retrospective review of videofluoroscopic swallow studies (VFSS) in infants with PWS seen at our institution. We hypothesize that VFSS will characterize swallow pathology suspected by clinical observation during a feeding evaluation and may help determine feeding safety in these infants.Retrospective review of 23 VFSS on 10 PWS infants (average age 9.7 ±â€Š8.4 months; range 3 weeks-29 months). Logistic regression models evaluated associations between gender, genetic subtype, and growth hormone (GH) use on aspiration incidence. Polysomnographic (PSG) studies conducted on the same participant ±1 year from VFSS were examined to characterize respiratory abnormalities.There was a high rate of swallowing dysfunction (pharyngeal residue 71%, aspiration events 87%) and disordered sleep. All aspiration events were silent. There were no differences in rates of aspiration for gender, genetic subtype, or GH use.A high incidence of aspiration was identified indicating swallow dysfunction may frequently be present in infants with PWS. Comprehensive evaluation of feeding and swallowing is essential and requires a multidisciplinary approach. Providers should recognize risk factors for swallow dysfunction and consider a multidisciplinary approach to guide decision making and optimize feeding safety in PWS.


Asunto(s)
Trastornos de Deglución/fisiopatología , Síndrome de Prader-Willi/fisiopatología , Aspiración Respiratoria/diagnóstico por imagen , Aspiración Respiratoria/fisiopatología , Preescolar , Femenino , Fluoroscopía , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos , Factores de Riesgo , Grabación en Video
15.
J Physiol ; 594(2): 437-52, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26460603

RESUMEN

KEY POINTS: The contractile properties of human fetal cardiac muscle have not been previously studied. Small-scale approaches such as isolated myofibril and isolated contractile protein biomechanical assays allow study of activation and relaxation kinetics of human fetal cardiac muscle under well-controlled conditions. We have examined the contractile properties of human fetal cardiac myofibrils and myosin across gestational age 59-134 days. Human fetal cardiac myofibrils have low force and slow kinetics of activation and relaxation that increase during the time period studied, and kinetic changes may result from structural maturation and changes in protein isoform expression. Understanding the time course of human fetal cardiac muscle structure and contractile maturation can provide a framework to study development of contractile dysfunction with disease and evaluate the maturation state of cultured stem cell-derived cardiomyocytes. ABSTRACT: Little is known about the contractile properties of human fetal cardiac muscle during development. Understanding these contractile properties, and how they change throughout development, can provide valuable insight into human heart development, and provide a framework to study the early stages of cardiac diseases that develop in utero. We characterized the contractile properties of isolated human fetal cardiac myofibrils across 8-19 weeks of gestation. Mechanical measurements revealed that in early stages of gestation there is low specific force and slow rates of force development and relaxation, with increases in force and the rates of activation and relaxation as gestation progresses. The duration and slope of the initial, slow phase of relaxation, related to myosin detachment and thin filament deactivation rates, decreased with gestation age. F-actin sliding on human fetal cardiac myosin-coated surfaces slowed significantly from 108 to 130 days of gestation. Electron micrographs showed human fetal muscle myofibrils elongate and widen with age, but features such as the M-line and Z-band are apparent even as early as day 52. Protein isoform analysis revealed that ß-myosin is predominantly expressed even at the earliest time point studied, but there is a progressive increase in expression of cardiac troponin I (TnI), with a concurrent decrease in slow skeletal TnI. Together, our results suggest that cardiac myofibril force production and kinetics of activation and relaxation change significantly with gestation age and are influenced by the structural maturation of the sarcomere and changes in contractile filament protein isoforms.


Asunto(s)
Corazón Fetal/fisiología , Contracción Miocárdica , Miofibrillas/fisiología , Actinas/genética , Actinas/metabolismo , Adulto , Femenino , Corazón Fetal/embriología , Humanos , Masculino , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Miosinas/genética , Miosinas/metabolismo , Troponina I/genética , Troponina I/metabolismo
16.
Am J Hum Genet ; 96(5): 841-9, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957469

RESUMEN

Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development.


Asunto(s)
Artrogriposis/genética , Proteínas del Citoesqueleto/genética , Miosinas/biosíntesis , Artrogriposis/fisiopatología , Proteínas del Citoesqueleto/biosíntesis , Exoma/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Miosinas/genética , Osteogénesis/genética
17.
Pediatr Endocrinol Rev ; 12(3): 297-307, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25962207

RESUMEN

Prader-Willi Syndrome (PWS) is one of the most common genetic causes of obesity. The phenotype of obesity in PWS is unique and characterized by hyperphagia, earlier meal initiation, delayed meal termination, reduced energy expenditure, abnormal gut hormone profiles, as well as irregular responses to food in areas of the brain associated with satiety and reward. Management of obesity is necessary to avoid major morbidity. The relentless food-seeking behavior associated with PWS such as stealing, hoarding food, eating inedibles, and lying about eating, can cause turmoil both inside and outside of the home. Management is challenging for both patients and caretakers, but at this time there are limited medical therapies available besides dietary restriction and behavior management. However, current research shows promise for discovery of additional treatment options for hyperphagia and obesity management in PWS.


Asunto(s)
Obesidad/terapia , Síndrome de Prader-Willi/terapia , Animales , Humanos , Hiperfagia/complicaciones , Hiperfagia/terapia , Obesidad/etiología , Síndrome de Prader-Willi/complicaciones , Síndrome de Prader-Willi/genética , Programas de Reducción de Peso/métodos
18.
Hum Mol Genet ; 24(12): 3348-58, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25740846

RESUMEN

Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general.


Asunto(s)
Disostosis Craneofacial/genética , Disostosis Craneofacial/fisiopatología , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Mutación , Miosinas/genética , Adolescente , Adulto , Calcio/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Disostosis Craneofacial/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Expresión Génica , Humanos , Masculino , Músculo Esquelético/patología , Miofibrillas/genética , Miofibrillas/metabolismo , Miosinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adulto Joven
19.
Pediatrics ; 135(3): e736-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25687148

RESUMEN

Single-nucleotide polymorphism arrays and other types of genetic tests have the potential to detect first-degree consanguinity and uncover parental rape in cases of minor teenage pregnancy. We present 2 cases in which genetic testing identified parental rape of a minor teenager. In case 1, single-nucleotide polymorphism array in a patient with multiple developmental abnormalities demonstrated multiple long stretches of homozygosity, revealing parental rape of a teenage mother. In case 2, a vague maternal sexual assault history and diagnosis of Pompe disease by direct gene sequencing identified parental rape of a minor. Given the medical, legal, and ethical implications of such revelations, a protocol was developed at our institution to manage consanguinity identified via genetic testing.


Asunto(s)
Anomalías Múltiples/diagnóstico , Consanguinidad , Pruebas Genéticas/métodos , Anomalías Múltiples/genética , Adolescente , Niño , Femenino , Humanos , Recién Nacido , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo
20.
Am J Hum Genet ; 96(3): 462-73, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25683120

RESUMEN

Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s).


Asunto(s)
Contractura/genética , Extremidades/fisiopatología , Cara/anomalías , Hipotonía Muscular/genética , Canales de Sodio/genética , Artrogriposis/genética , Disostosis Craneofacial/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Exoma , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Lactante , Canales Iónicos , Masculino , Proteínas de la Membrana , Mutación Missense , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...