Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Anim ; 56(4): 344-355, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35062839

RESUMEN

Laboratory rodents spend the entire day housed in standard cages that provide a restricted area for movements and might, therefore, limit physical activity. However, it has not been tested in immature rodents of ages ranging from weaning to adulthood (adolescence period) whether the restricted area per animal does actually reduce physical activity and impact the body composition. We analyzed the spontaneous physical activity and feeding behavior during the adolescence of mice kept in two different housing conditions (standard stocking density (SSD) versus low stocking density (LSD)). We aimed to compare the body composition between SSD and LSD groups before they reached adulthood. Differential housing began at four weeks of age and was maintained for four weeks until euthanasia at eight weeks of age. The SSD group had a floor space of 88 cm2 available per animal, while LSD mice were housed with a floor space of 320 cm2 per animal, increasing the individual radius for movement more than three-fold compared with standard requirements. Mice kept in SSD exhibit lower spontaneous physical activity than mice kept in LSD. Early-life exposure to reduced physical activity in mice housed in SSD resulted in greater visceral fat accumulation before adulthood. An environment enabling/stimulating physical activity should be established for rodents as early as possible. This study will be helpful in showing that mice kept in SSD are early exposed to a reduced physical activity already in the adolescence period. Our findings could raise reflections about the translatability of rodents kept in SSD to healthy active humans.


Asunto(s)
Grasa Intraabdominal , Dietilamida del Ácido Lisérgico , Adulto , Animales , Vivienda para Animales , Humanos , Ratones
2.
Scand J Med Sci Sports ; 32(2): 402-413, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34706104

RESUMEN

The study aimed to identify and quantify the metabolites profile and metabolic pathways in human muscle tissue engaged during exhaustive high-intensity cycling exercise. Seven healthy physically active men performed a graded exercise test and an exhaustive supramaximal effort at 115% of maximal aerobic power with muscles biopsies performed in rest and immediately after exhaustion for quantifying of muscle metabolites changes by 1 H-NMR spectroscopy. The time until exhaustion (tlim) recorded was 224.7 ± 35.5 s whereas the muscle pH at exhaustion was 6.48 ± 0.05. A total of 54 metabolites were identified and quantified. The most enriched and impacted pathways included: beta oxidation of very long chain fatty acids, mitochondrial electron transport chain, alanine aspartate, and glutamate metabolism, citric acid cycle, arginine biosynthesis, propanoate metabolism, threonine and 2-oxobutanoate degradation and pyruvate metabolism. In addition, the muscle concentrations in Post exercise, compared to Pre increased significantly (p < 0.0398) for fumarate (42.0%), succinate (101.2%), glucose (249.7%), lactate (122.8%), O-acetylcarnitine (164.7%), glycerol (79.3%), AMP (288.2%), 2-oxobutyrate (121.0%), and methanol (58.5%), whereas decreased significantly (p < 0.010) for creatine phosphate (-70.2%), ADP (-56.5%), carnitine (-33.5%), and glutamate (-42.3%). Only the succinate was significantly correlated with tlim (r = -0.76; p = 0.0497). Besides the classical expected contribution of glycolytic and phosphagen energetic pathways, it was demonstrated that the high-intensity exercise is also associated with pathways indicatives of amino acid and fatty acid oxidation metabolisms, highlighting the inverse relation between changes in the intramuscular succinate levels and tlim.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Ciclismo , Prueba de Esfuerzo , Humanos , Masculino , Metabolómica
3.
Sci Rep ; 11(1): 6414, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742012

RESUMEN

High-intensity interval training (HIIT) is of scientific interest due its role in improving physical fitness, but the effects of HIIT on bone health need be carefully explored. Further, it is necessary to know whether HIIT effects on bone health are dependent on the physical activity levels. This may be experimentally tested since we have built a large cage (LC) that allows animals to move freely, promoting an increase of spontaneous physical activity (SPA) in comparison to a small cage (SC). Thus, we examined the effects of HIIT on biophysical, biomechanical and biochemical parameters of bone tissue of C57BL/6J mice living in cages of two different sizes: small (SC) or large (LC) cages with 1320 cm2 and 4800 cm2 floor space, respectively. Male mice were subdivided into two groups within each housing type: Control (C) and Trained (T). At the end of the interventions, all mice were euthanized to extract the femur bone for biophysical, biomechanical and biochemical analyses. Based a significant interaction from two-way ANOVA, trained mice kept in large cage (but not for trained mice housed in SC) exhibited a reduction of tenacity and displacement at failure in bone. This suggests that long-term HIIT program, in addition with a more active lifestyle correlates with exerts negative effects on the bone of healthy mice. A caution must also be raised about the excessive adoption of physical training, at least regarding bone tissue. On the other hand, increased calcium was found in femur of mice housed in LC. In line with this, LC-C mice were more active (i.e. SPA) than other groups. This implies that an active lifestyle without long-term high intensity physical training seems to play a role in promoting benefits to bone tissue. Our data provides new insights for treatment of osteo-health related disorders.


Asunto(s)
Fémur/química , Fémur/fisiología , Entrenamiento de Intervalos de Alta Intensidad/efectos adversos , Condicionamiento Físico Animal/fisiología , Aptitud Física/fisiología , Animales , Densidad Ósea/fisiología , Calcio/análisis , Vivienda para Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fósforo/análisis , Conducta Sedentaria , Soporte de Peso/fisiología
4.
Front Physiol ; 9: 843, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034346

RESUMEN

Sports and exercise today are popular for both amateurs and athletes. However, we continue to seek the best ways to analyze best athlete performances and develop specific tools that may help scientists and people in general to analyze athletic achievement. Standard statistics and cause-and-effect research, when applied in isolation, typically do not answer most scientific questions. The human body is a complex holistic system exchanging data during activities, as has been shown in the emerging field of network physiology. However, the literature lacks studies regarding sports performance, running, exercise, and more specifically, sprinter athletes analyzed mathematically through complex network modeling. Here, we propose complex models to jointly analyze distinct tests and variables from track sprinter athletes in an untargeted manner. Through complex propositions, we have incorporated mathematical and computational modeling to analyze anthropometric, biomechanics, and physiological interactions in running exercise conditions. Exercise testing associated with complex network and mathematical outputs make it possible to identify which responses may be critical during running. The physiological basis, aerobic, and biomechanics variables together may play a crucial role in performance. Coaches, trainers, and runners can focus on improving specific outputs that together help toward individuals' goals. Moreover, our type of analysis can inspire the study and analysis of other complex sport scenarios.

5.
Front Physiol ; 8: 389, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642717

RESUMEN

In 1993, Uwe Tegtbur proposed a useful physiological protocol named the lactate minimum test (LMT). This test consists of three distinct phases. Firstly, subjects must perform high intensity efforts to induce hyperlactatemia (phase 1). Subsequently, 8 min of recovery are allowed for transposition of lactate from myocytes (for instance) to the bloodstream (phase 2). Right after the recovery, subjects are submitted to an incremental test until exhaustion (phase 3). The blood lactate concentration is expected to fall during the first stages of the incremental test and as the intensity increases in subsequent stages, to rise again forming a "U" shaped blood lactate kinetic. The minimum point of this curve, named the lactate minimum intensity (LMI), provides an estimation of the intensity that represents the balance between the appearance and clearance of arterial blood lactate, known as the maximal lactate steady state intensity (iMLSS). Furthermore, in addition to the iMLSS estimation, studies have also determined anaerobic parameters (e.g., peak, mean, and minimum force/power) during phase 1 and also the maximum oxygen consumption in phase 3; therefore, the LMT is considered a robust physiological protocol. Although, encouraging reports have been published in both human and animal models, there are still some controversies regarding three main factors: (1) the influence of methodological aspects on the LMT parameters; (2) LMT effectiveness for monitoring training effects; and (3) the LMI as a valid iMLSS estimator. Therefore, the aim of this review is to provide a balanced discussion between scientific evidence of the aforementioned issues, and insights for future investigations are suggested. In summary, further analyses is necessary to determine whether these factors are worthy, since the LMT is relevant in several contexts of health sciences.

6.
Front Physiol ; 7: 132, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27148071

RESUMEN

Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home cages. This new finding is worth for scientists who work with animal models to study the protective effects of exercise.

7.
Lipids Health Dis ; 10: 77, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21569626

RESUMEN

BACKGROUND: Diabetes mellitus is associated with metabolic dysfunctions, including alterations in circulating lipid levels and fat tissue accumulation, which causes, among other pathologies, non-alcoholic fatty liver disease (NAFLD). AIM OF THE STUDY: The objective of this study was to analyse the effects of physical exercise and spirulina intake on the control of NAFLD in diabetic Wistar rats. METHODS: Diabetes was induced in the animals through intravenous administration of alloxan. The rats were divided into four groups: Diabetic Control (DC) - diabetic rats fed with a control diet and no physical exercise; Diabetic Spirulina (DS) - diabetic rats fed with a diet that included spirulina; Diabetic Spirulina and Exercise (DSE) - diabetic rats fed with a diet that included Spirulina and that exercised; and Diabetic Exercise (DE) - diabetic rats fed with a control diet and that exercised. RESULTS: The groups DS, DSE, and DE presented lower plasma concentrations of LDL cholesterol than DC, as well as lower levels of total liver lipids in groups DS, DSE, and DE in comparison to DC. CONCLUSION: Thus, spirulina appears to be effective in reducing total circulating levels of LDL-cholesterol and hepatic lipids, alone or in conjunction with physical exercise in diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/prevención & control , Hígado Graso/complicaciones , Hígado Graso/prevención & control , Lípidos/sangre , Condicionamiento Físico Animal , Spirulina/química , Animales , Área Bajo la Curva , Peso Corporal , Diabetes Mellitus Experimental/sangre , Ingestión de Líquidos , Hígado Graso/sangre , Enfermedad del Hígado Graso no Alcohólico , Ratas , Ratas Wistar
8.
J Strength Cond Res ; 23(6): 1820-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19675478

RESUMEN

The purpose of this study was to investigate the reliability and validity of the running anaerobic sprint test (RAST) in anaerobic assessment and predicting short-distance performance. Forty members of the armed forces were recruited for this study (age 19.78 +/- 1.18 years; body mass 70.34 +/- 8.10 kg; height 1.76 +/- 0.53 m; body fat 15.30 +/- 5.65 %). The RAST test was applied to six 35-meter maximal running performances with a 10-second recovery between each run; the peak power, mean power, and the fatigue index were measured. The study was divided in two stages. The first stage investigated the reliability of the RAST using a test-retest method; the second stage aimed to evaluate the validity of the RAST comparing the results with the Wingate test and running performances of 35, 50, 100, 200, and 400 m. There were not significant differences between test-retest scores in the first stage of the study (p > 0.05) and were found significant correlations between these variables (intraclass correlation coefficient approximately = 0.88). The RAST had significant correlations with the Wingate test (peak power r = 0.46; mean power r = 0.53; fatigue index r = 0.63) and 35, 50, 100, 200, and 400 m performances scores (p < 0.05). The advantage of using the RAST for measuring anaerobic power is that it allows for the execution of movements more specific to sporting events that use running as the principal style of locomotion, is easily applied and low cost, and due to its simplicity can easily be incorporated into routine training. We concluded that this procedure is reliable and valid, and can be used to measure running anaerobic power and predict short-distance performances.


Asunto(s)
Umbral Anaerobio/fisiología , Carrera/fisiología , Adulto , Rendimiento Atlético/fisiología , Humanos , Masculino , Resistencia Física/fisiología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Atletismo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...