Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Neurology ; 102(1): e207898, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165373

RESUMEN

BACKGROUND AND OBJECTIVES: GM2 gangliosidoses, a group of autosomal-recessive neurodegenerative lysosomal storage disorders, result from ß-hexosaminidase (HEX) deficiency with GM2 ganglioside as its main substrate. Historically, GM2 gangliosidoses have been classified into infantile, juvenile, and late-onset forms. With disease-modifying treatment trials now on the horizon, a more fine-grained understanding of the disease course is needed. METHODS: We aimed to map and stratify the clinical course of GM2 gangliosidoses in a multicenter cohort of pediatric and adult patients. Patients were stratified according to age at onset and age at diagnosis. The 2 resulting GM2 disease clusters were characterized in-depth for respective disease features (detailed standardized clinical, laboratory, and MRI assessments) and disease evolution. RESULTS: In 21 patients with GM2 gangliosidosis (17 Tay-Sachs, 2 GM2 activator deficiency, 2 Sandhoff disease), 2 disease clusters were discriminated: an early-onset and early diagnosis cluster (type I; n = 8, including activator deficiency and Sandhoff disease) and a cluster with very variable onset and long interval until diagnosis (type II; n = 13 patients). In type I, rapid onset of developmental stagnation and regression, spasticity, and seizures dominated the clinical picture. Cherry red spot, startle reactions, and elevated AST were only seen in this cluster. In type II, problems with balance or gait, muscle weakness, dysarthria, and psychiatric symptoms were specific and frequent symptoms. Ocular signs were common, including supranuclear vertical gaze palsy in 30%. MRI involvement of basal ganglia and peritrigonal hyperintensity was seen only in type I, whereas predominant infratentorial atrophy (or normal MRI) was characteristic in type II. These types were, at least in part, associated with certain genetic variants. DISCUSSION: Age at onset alone seems not sufficient to adequately predict different disease courses in GM2 gangliosidosis, as required for upcoming trial planning. We propose an alternative classification based on age at disease onset and dynamics, predicted by clinical features and biomarkers, into type I-an early-onset, rapid progression cluster-and type II-a variable onset, slow progression cluster. Specific diagnostic workup, including GM2 gangliosidosis, should be performed in patients with combined ataxia plus lower motor neuron weakness to identify type II patients.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Adulto , Humanos , Niño , Enfermedad de Sandhoff/diagnóstico por imagen , Enfermedad de Sandhoff/genética , Gangliosidosis GM2/diagnóstico por imagen , Gangliosidosis GM2/genética , Diagnóstico por Imagen , Ataxia , Progresión de la Enfermedad
2.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141063

RESUMEN

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Adulto Joven , Humanos , ARN Mensajero/genética , Monoéster Fosfórico Hidrolasas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Hidrolasas Nudix
3.
Brain ; 146(10): 4200-4216, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37163662

RESUMEN

Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.


Asunto(s)
Enfermedades Musculares , Proteómica , Humanos , Filaminas/genética , Mutación/genética , Enfermedades Musculares/genética , Debilidad Muscular , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834931

RESUMEN

SOX4 is a transcription factor with pleiotropic functions required for different developmental processes, such as corticogenesis. As with all SOX proteins, it contains a conserved high mobility group (HMG) and exerts its function via interaction with other transcription factors, such as POU3F2. Recently, pathogenic SOX4 variants have been identified in several patients who had clinical features overlapping with Coffin-Siris syndrome. In this study, we identified three novel variants in unrelated patients with intellectual disability, two of which were de novo (c.79G>T, p.Glu27*; c.182G>A p.Arg61Gln) and one inherited (c.355C>T, p.His119Tyr). All three variants affected the HMG box and were suspected to influence SOX4 function. We investigated the effects of these variants on transcriptional activation by co-expressing either wildtype (wt) or mutant SOX4 with its co-activator POU3F2 and measuring their activity in reporter assays. All variants abolished SOX4 activity. While our experiments provide further support for the pathogenicity of SOX4 loss-of-function (LOF) variants as a cause of syndromic intellectual disability (ID), our results also indicate incomplete penetrance associated with one variant. These findings will improve classification of novel, putatively pathogenic SOX4 variants.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Factores de Transcripción SOXC , Humanos , Regulación de la Expresión Génica , Discapacidad Intelectual/genética , Micrognatismo/genética , Factores de Transcripción SOXC/genética , Factores de Transcripción/metabolismo
6.
J Med Genet ; 60(1): 48-56, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740919

RESUMEN

BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.


Asunto(s)
Artrogriposis , Humanos , Animales , Porcinos , Mutación/genética , Artrogriposis/genética , Artrogriposis/patología , Pérdida de Heterocigocidad , Feto , Fenotipo , Linaje , Cinesinas/genética
7.
Mol Genet Metab ; 137(3): 273-282, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36240581

RESUMEN

OBJECTIVES: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency of arylsulfatase A (ARSA). Subsequent accumulation of sulfatides leads to demyelination and neurodegeneration in the central and peripheral nervous system. To date MLD is classified based on the age at onset, however, especially for late onset forms this classification provides only limited projection regarding the clinical disease course. Moreover, evolving newborn screening approaches raise the need to predict the disease onset and course in pre-symptomatic individuals. Here, we correlate the ARSA activity and the ARSA-genotype with clinical parameters in a large cohort of 96 affected individuals. MATERIALS AND METHODS: Clinical data of 96 affected individuals with genetically and/or biochemically confirmed MLD were collected from a national database. Leukocyte samples from 69 affected individuals were re-analyzed for the ARSA activity using p-nitrocatecholsulfate as substrate with a refined ARSA assay towards the lower limit of detection. For 84 individuals genetic sequencing was conducted by Sanger or next generation sequencing (NGS). RESULTS: The adapted ARSA assay revealed the discriminatory power to differentiate MLD subtypes as the residual enzyme activity was low in late infantile and early juvenile forms, and clearly higher in late juvenile and adult MLD (p < 0.001). A residual enzyme activity below 1% compared to controls predicted an early onset (late-infantile or early-juvenile) and rapid disease progression. A firm genotype-phenotype correlation was proven as reliable for bi-allelic protein-truncating variants in the ARSA gene resulting in minimal residual ARSA activity, an early onset of the disease and initial decline of motor functions. Although the impact of missense variants was equivocal, few variants with a recognizable clinical spectrum were identified. DISCUSSION: ARSA activity in leukocytes as well as the ARSA genotype can predict the age of disease onset and the dynamic of disease progression for most of the early onset forms. This knowledge is relevant for patient counseling and to guide treatment decisions, especially when identifying pre-symptomatic individuals, e.g., in newborn screening. However, due to the high cumulative frequency of rare disease-causing missense variants in the ARSA gene that lead to highly variable residual enzyme activity, reiterated biochemical and genetic studies are needed to improve disease course prediction.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Humanos , Cerebrósido Sulfatasa/genética , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Genotipo , Fenotipo , Progresión de la Enfermedad
8.
Prenat Diagn ; 42(7): 901-910, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35574990

RESUMEN

OBJECTIVES: To examine the diagnostic yield of trio exome sequencing in fetuses with multiple structural defects with no pathogenic findings in cytogenetic and microarray analyses. METHODS: We recruited 51 fetuses with two or more defects, non-immune fetal hydrops or fetal akinesia deformation syndrome|or fetal akinesia deformation sequence (FADS). Trio exome sequencing was performed on DNA from chorionic villi samples and parental blood. Detection of genomic variation and prioritization of clinically relevant variants was performed according to in-house standard operating procedures. RESULTS: Median maternal and gestational age was 32.0 years and 21.0 weeks, respectively. Forty-three (84.3%) fetuses had two or more affected organ systems. The remaining fetuses had isolated fetal hydrops or FADS. In total, the exome analysis established the genetic cause for the clinical abnormalities in 22 (43.1%, 95% CI 29.4%-57.8%) pregnancies. CONCLUSIONS: In fetuses with multiple defects, hydrops or FADS and normal standard genetic results, trio exome sequencing has the potential to identify genetic anomalies in more than 40% of cases.


Asunto(s)
Exoma , Hidropesía Fetal , Adulto , Femenino , Feto/diagnóstico por imagen , Humanos , Hidropesía Fetal/genética , Padres , Embarazo , Diagnóstico Prenatal/métodos , Ultrasonografía Prenatal , Secuenciación del Exoma/métodos
9.
Genet Med ; 24(6): 1283-1296, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35346573

RESUMEN

PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.


Asunto(s)
ADN Helicasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Trastornos del Neurodesarrollo , ADN Helicasas/genética , Heterocigoto , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome
10.
Int J Cancer ; 150(10): 1722-1733, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085407

RESUMEN

Identification of prognostic or predictive molecular markers in glioblastoma resection specimens may lead to strategies for therapy stratification and personalized treatment planning. Here, we analyzed in primary glioblastoma stem cell (pGSC) cultures the mRNA abundances of seven stem cell (MSI1, Notch1, nestin, Sox2, Oct4, FABP7 and ALDH1A3), and three radioresistance or invasion markers (CXCR4, IKCa and BKCa ). From these abundances, an mRNA signature was deduced which describes the mesenchymal-to-proneural expression profile of an individual GSC culture. To assess its functional significance, we associated the GSC mRNA signature with the clonogenic survival after irradiation with 4 Gy and the fibrin matrix invasion of the GSC cells. In addition, we compared the molecular pGSC mRNA signature with the tumor recurrence pattern and the overall survival of the glioblastoma patients from whom the pGSC cultures were derived. As a result, the molecular pGSC mRNA signature correlated positively with the pGSC radioresistance and matrix invasion capability in vitro. Moreover, patients with a mesenchymal (>median) mRNA signature in their pGSC cultures exhibited predominantly a multifocal tumor recurrence and a significantly (univariate log rank test) shorter overall survival than patients with proneural (≤median mRNA signature) pGSCs. The tumors of the latter recurred predominately unifocally. We conclude that our pGSC cultures induce/select those cell subpopulations of the heterogeneous brain tumor that determine disease progression and therapy outcome. In addition, we further postulate a clinically relevant prognostic/predictive value for the 10 mRNAs-based mesenchymal-to-proneural signature of the GSC subpopulations in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/genética , Fenotipo , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
11.
J Cutan Pathol ; 49(3): 293-298, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34672003

RESUMEN

Angiokeratoma corporis diffusum (ACD) was long thought to be a specific dermal sign of Fabry disease (FD, X-linked alpha-galactosidase A [GLA] deficiency). However, other lysosomal storage diseases (LSDs) have also been identified as triggers of ACD. Generalized vasculopathy is an important pathogenetic factor in FD and may also lead to the acroparesthesia (AP) often predominant in FD. We report on an 85-year-old woman with ACD present since her youth and associated with severe AP. Ultrastructure of the dermal lesion showed no lysosomal involvement, but the absence of the basement membrane of the endothelial cells of the capillary vessels was noteworthy. Repeated analyses of the GLA gene revealed no evidence of FD. Whole-exome sequencing was negative for FD and other LSDs, and allowed us to also study FD-related intronic regions of the GLA gene. This is the first report of a patient with FD-like ACD with an endothelial abnormality, otherwise unexplained vasculopathy and severe AP, which are not due to FD or another LSD. Based on family history, another genetic, yet unidentified, defect may cause the disease in this patient. In unexplained ACD, extended genetic analysis is required to exclude particular pathogenic variants of the GLA gene and other genes.


Asunto(s)
Membrana Basal/anomalías , Células Endoteliales/ultraestructura , Enfermedad de Fabry/complicaciones , Parestesia/etiología , Anciano de 80 o más Años , Enfermedad de Fabry/genética , Femenino , Humanos , Secuenciación del Exoma , alfa-Galactosidasa/genética
12.
Front Cell Dev Biol ; 10: 1020609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726590

RESUMEN

In 2016 and 2018, Chung, Jansen and others described a new syndrome caused by haploinsufficiency of PHIP (pleckstrin homology domain interacting protein, OMIM *612,870) and mainly characterized by developmental delay (DD), learning difficulties/intellectual disability (ID), behavioral abnormalities, facial dysmorphism and obesity (CHUJANS, OMIM #617991). So far, PHIP alterations appear to be a rare cause of DD/ID. "Omics" technologies such as exome sequencing or array analyses have led to the identification of distinct types of alterations of PHIP, including, truncating variants, missense substitutions, splice variants and large deletions encompassing portions of the gene or the entire gene as well as adjacent genomic regions. We collected clinical and genetic data of 23 individuals with PHIP-associated Chung-Jansen syndrome (CHUJANS) from all over Europe. Follow-up investigations (e.g. Sanger sequencing, qPCR or Fluorescence-in-situ-Hybridization) and segregation analysis showed either de novo occurrence or inheritance from an also (mildly) affected parent. In accordance with previously described patients, almost all individuals reported here show developmental delay (22/23), learning disability or ID (22/23), behavioral abnormalities (20/23), weight problems (13/23) and characteristic craniofacial features (i.e. large ears/earlobes, prominent eyebrows, anteverted nares and long philtrum (23/23)). To further investigate the facial gestalt of individuals with CHUJANS, we performed facial analysis using the GestaltMatcher approach. By this, we could establish that PHIP patients are indistinguishable based on the type of PHIP alteration (e.g. missense, loss-of-function, splice site) but show a significant difference to the average face of healthy individuals as well as to individuals with Prader-Willi syndrome (PWS, OMIM #176270) or with a CUL4B-alteration (Intellectual developmental disorder, X-linked, syndromic, Cabezas type, OMIM #300354). Our findings expand the mutational and clinical spectrum of CHUJANS. We discuss the molecular and clinical features in comparison to the published individuals. The fact that some variants were inherited from a mildly affected parent further illustrates the variability of the associated phenotype and outlines the importance of a thorough clinical evaluation combined with genetic analyses for accurate diagnosis and counselling.

13.
Diagnostics (Basel) ; 11(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809020

RESUMEN

INTRODUCTION: Glycogen storage disease type VI (GSD VI) is a disorder of glycogen metabolism due to mutations in the PYGL gene. Patients with GSD VI usually present with hepatomegaly, recurrent hypoglycemia, and short stature. RESULTS: We report on two non-related Turkish patients with a novel homozygous splice site variant, c.345G>A, which was shown to lead to exon 2 skipping of the PYGL-mRNA by exome and transcriptome analysis. According to an in silico analysis, deletion Arg82_Gln115del is predicted to impair protein stability and possibly AMP binding. CONCLUSION: GSD VI is a possibly underdiagnosed disorder, and in the era of next generation sequencing, more and more patients with variants of unknown significance in the PYGL-gene will be identified. Techniques, such as transcriptome analysis, are important tools to confirm the pathogenicity and to determine therapeutic measures based on genetic results.

14.
JIMD Rep ; 58(1): 80-88, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33728250

RESUMEN

Multiple sulfatase deficiency (MSD) is a lysosomal storage disease caused by a deficiency of formylglycine-generating enzyme due to SUMF1 defects. MSD may be misdiagnosed as metachromatic leukodystrophy (MLD), as neurological and neuroimaging findings are similar, and arylsulfatase A (ARSA) deficiency and enhanced urinary sulfatide excretion may also occur. While ARSA deficiency seems a cause for neurological symptoms and later neurodegenerative disease course, deficiency of other sulfatases results in clinical features such as dysmorphism, dysostosis, or ichthyosis. We report on a girl and a boy of the same origin presenting with severe ARSA deficiency and neurological and neuroimaging features compatible with MLD. However, exome sequencing revealed not yet described homozygosity of the missense variant c.529G > C, p.Ala177Pro in SUMF1. We asked whether dynamics of disease course differs between MSD and MLD. Comparison to a cohort of 59 MLD patients revealed different disease course concerning onset and disease progression in both MSD patients. The MSD patients showed first gross motor symptoms earlier than most patients with juvenile MLD (<10th percentile of Gross-Motor-Function in MLD [GMFC-MLD] 1). However, subsequent motor decline was more protracted (75th and 90th percentile of GMFC-MLD 2 (loss of independent walking) and 75th percentile of GMFC-MLD 5 (loss of any locomotion)). Language decline started clearly after 50th percentile of juvenile MLD and progressed rapidly. Thus, dynamics of disease course may be a further clue for the characterization of MSD. These data may contribute to knowledge of natural course of ultra-rare MSD and be relevant for counseling and therapy.

15.
Neurology ; 96(2): e255-e266, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046606

RESUMEN

OBJECTIVE: To compare disease progression between different onset forms of metachromatic leukodystrophy (MLD) and to investigate the influence of the type of first symptoms on the natural course and dynamic of disease progression. METHODS: Clinical, genetic, and biochemical parameters were analyzed within a nationwide study of patients with late-infantile (LI; onset age ≤2.5 years), early-juvenile (EJ; onset age 2.6 to <6 years), late-juvenile (LJ; onset age 6 to <16 years), and adult (onset age ≥16 years) forms of MLD. First symptoms were categorized as motor symptoms only, cognitive symptoms only, or both. Standardized clinical endpoints included loss of motor and language functions, as well as dysphagia/tube feeding. RESULTS: Ninety-seven patients with MLD were enrolled. Patients with LI (n = 35) and EJ (n = 18) MLD exhibited similarly rapid disease progression, all starting with motor symptoms (with or without additional cognitive symptoms). In LJ (n = 38) and adult-onset (n = 6) patients, the course of the disease was as rapid as in the early-onset forms, when motor symptoms were present at disease onset, while patients with only cognitive symptoms at disease onset exhibited significantly milder disease progression, independently of their age at onset. A certain genotype-phenotype correlation was observed. CONCLUSIONS: In addition to age at onset, the type of first symptoms predicts the rate of disease progression in MLD. These findings are important for counseling and therapy. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with MLD, age at onset and the type of first symptoms predict the rate of disease progression.


Asunto(s)
Progresión de la Enfermedad , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/epidemiología , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Adulto Joven
16.
Orphanet J Rare Dis ; 15(1): 294, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076953

RESUMEN

BACKGROUND: MAGEL2-associated Schaaf-Yang syndrome (SHFYNG, OMIM #615547, ORPHA: 398069), which was identified in 2013, is a rare disorder caused by truncating variants of the paternal copy of MAGEL2, which is localized in the imprinted region on 15q11.2q13. The phenotype of SHFYNG in childhood partially overlaps with that of the well-established Prader-Willi syndrome (PWS, OMIM #176270). While larger numbers of younger individuals with SHFYNG have been recently published, the phenotype in adulthood is not well established. We recruited 7 adult individuals (aged 18 to 36) with molecularly confirmed SHFYNG and collected data regarding the clinical profile including eating habits, sleep, behavior, personal autonomy, psychiatric abnormalities and other medical conditions, as well as information about the respective phenotypes in childhood. RESULTS: Within our small cohort, we identified a range of common features, such as disturbed sleep, hypoactivity, social withdrawal and anxiety, but also noted considerable differences at the level of personal autonomy and skills. Behavioral problems were frequent, and a majority of individuals displayed weight gain and food-seeking behavior, along with mild intellectual disability or borderline intellectual function. Classical symptoms of SHFYNG in childhood were reported for most individuals. CONCLUSION: Our findings indicate a high variability of the functional abilities and social participation of adults with SHFYNG. A high prevalence of obesity within our cohort was notable, and uncontrollable food intake was a major concern for some caregivers. The phenotypes of PWS and SHFYNG in adulthood might be more difficult to discern than the phenotypes in childhood. Molecular genetic testing for SHFYNG should therefore be considered in adults with the suspected diagnosis of PWS, if testing for PWS has been negative.


Asunto(s)
Artrogriposis , Discapacidad Intelectual , Síndrome de Prader-Willi , Adulto , Humanos , Discapacidad Intelectual/genética , Fenotipo , Síndrome de Prader-Willi/genética , Proteínas/genética
17.
Orphanet J Rare Dis ; 15(1): 243, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912261

RESUMEN

BACKGROUND: Krabbe disease or globoid cell leukodystrophy is a severe neurodegenerative disorder caused by a defect in the GALC gene leading to a deficiency of the enzyme ß-galactocerebrosidase. The aim of this work was to describe the natural disease course covering the whole spectrum of the disease. METHODS: Natural history data were collected with a standardized questionnaire, supplemented by medical record data. We defined different forms of the disease according to Abdelhalim et al. (2014). Developmental and disease trajectories were described based on the acquisition and loss of milestones as well as the time of first clearly identifiable symptoms and needs such as spasticity, seizures and tube feeding. MRI was assessed using the scoring system by Loes et al. (1999) and in addition a pattern recognition approach, based on Abdelhalim et al. (2014). RESULTS: Thirty-eight patients were identified, from 27 of these patients 40 MRIs were available; 30 (79%) had an infantile onset, showing first symptoms in their first year of life, almost all (27 out of 30) starting in the first six months. A later onset after the first year of life was observed in 8 patients (21%, range 18 months to 60 years). Irritability, abnormalities in movement pattern as well as general developmental regression were the first symptoms in the infantile group; disease course was severe with rapid progression, e.g. loss of visual fixation, need for tube feeding and then an early death. Gait disorders were the first symptoms in all patients of the later onset groups; progression was variable. The different forms of the disease were characterized by different MRI patterns (infantile: diffuse white matter involvement and cerebellar structures specifically affected, later onset: parieto-occipital white matter and splenium affected, adult: motor tracts specifically affected). CONCLUSION: This is the first description of the natural history of Krabbe disease in a larger European cohort using developmental, clinical and MRI data. We would like to highlight the very different clinical and MRI characteristics of the later onset forms. These data are important for counselling affected patients and families and may serve as a basis for future treatment trials.


Asunto(s)
Leucodistrofia de Células Globoides , Adulto , Cerebelo/metabolismo , Galactosilceramidasa/metabolismo , Alemania , Humanos , Leucodistrofia de Células Globoides/diagnóstico por imagen , Imagen por Resonancia Magnética
18.
Eur J Med Genet ; 63(7): 103938, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32360255

RESUMEN

Pontocerebellar hypoplasia (PCH) comprises a clinically and genetically heterogeneous group of disorders characterized by hypoplasia and degeneration of the cerebellum and ventral pons. To date at least 18 different clinical subtypes of PCH associated with pathogenic variants in 19 different genes have been described. Only recently, bi-allelic variants in TBC1D23 have been reported as the underlying molecular defect in seven index cases with a suspected non-degenerative form of PCH, PCH type 11 (PCH11). We used exome sequencing to investigate an individual with global developmental delay, ataxia, seizures, and progressive PCH. Brain volume was evaluated over a disease course of 14 years using volumetric magnetic resonance imaging (MRI). Volume alterations were compared to age-matched controls as well as data from children with PCH2. We identified a homozygous frameshift variant in exon 9 of 18 of TBC1D23 predicting a loss of protein function. Brain morphometry revealed a pattern of pontine, brain stem, and supratentorial volume loss similar to PCH2 patients although less pronounced. Intriguingly, cerebral MRI findings at the age of 1 and 15 years clearly showed progressive atrophy of the cerebellum, especially the hemispheres. In four of the cases reported in the literature cerebellar hemispheres could be evaluated on the MRIs displayed, they also showed atrophic foliae. While pontine hypoplasia and pronounced microcephaly are in line with previous reports on PCH11, our observations of clearly postnatal atrophy of the cerebellum argues for a different pathomechanism than in the other forms of PCH and supports the hypothesis that TBC1D23 deficiency predominantly interferes with postnatal rather than with prenatal cerebellar development.


Asunto(s)
Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/patología , Cerebelo/anomalías , Cerebelo/fisiología , Adolescente , Atrofia/patología , Encéfalo/patología , Enfermedades Cerebelosas/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Exones , Femenino , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Homocigoto , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Microcefalia , Mutación , Malformaciones del Sistema Nervioso/genética , Linaje , Secuenciación del Exoma
19.
Neurology ; 94(16): e1702-e1715, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32234823

RESUMEN

OBJECTIVE: To characterize subclinical abnormalities in asymptomatic heterozygote NPC1 mutation carriers as markers of neurodegeneration. METHODS: Motor function, cognition, mood, sleep, and smell function were assessed in 20 first-degree heterozygous relatives of patients with Niemann-Pick disease type C (NPC) (13 male, age 52.7 ± 9.9 years). Video-oculography and abdominal ultrasound with volumetry were performed to assess oculomotor function and size of liver and spleen. NPC biomarkers in blood were analyzed. 18F-fluorodesoxyglucose PET was performed (n = 16) to detect patterns of brain hypometabolism. RESULTS: NPC heterozygotes recapitulated characteristic features of symptomatic NPC disease and demonstrated the oculomotor abnormalities typical of NPC. Hepatosplenomegaly (71%) and increased cholestantriol (33%) and plasma chitotriosidase (17%) levels were present. The patients also showed signs seen in other neurodegenerative diseases, including hyposmia (20%) or pathologic screening for REM sleep behavior disorder (24%). Cognitive function was frequently impaired, especially affecting visuoconstructive function, verbal fluency, and executive function. PET imaging revealed significantly decreased glucose metabolic rates in 50% of participants, affecting cerebellar, anterior cingulate, parieto-occipital, and temporal regions, including 1 with bilateral abnormalities. CONCLUSION: NPC heterozygosity, which has a carrier frequency of 1:200 in the general population, is associated with abnormal brain metabolism and functional consequences. Clinically silent heterozygous gene variations in NPC1 may be a risk factor for late-onset neurodegeneration, similar to the concept of heterozygous GBA mutations underlying Parkinson disease.


Asunto(s)
Hepatomegalia/diagnóstico por imagen , Heterocigoto , Péptidos y Proteínas de Señalización Intracelular/genética , Trastornos de la Motilidad Ocular/fisiopatología , Esplenomegalia/diagnóstico por imagen , Adulto , Anciano , Colestanoles/sangre , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/fisiopatología , Medidas del Movimiento Ocular , Familia , Femenino , Hepatomegalia/epidemiología , Hepatomegalia/genética , Hexosaminidasas/sangre , Humanos , Masculino , Persona de Mediana Edad , Mutación , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/diagnóstico por imagen , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Enfermedad de Niemann-Pick Tipo C/psicología , Trastornos de la Motilidad Ocular/epidemiología , Trastornos de la Motilidad Ocular/genética , Trastornos del Olfato/epidemiología , Fenotipo , Tomografía de Emisión de Positrones , Trastorno de la Conducta del Sueño REM/epidemiología , Esplenomegalia/epidemiología , Esplenomegalia/genética , Ultrasonografía
20.
Orphanet J Rare Dis ; 14(1): 136, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186049

RESUMEN

BACKGROUND: Metachromatic Leukodystrophy (MLD) is a rare autosomal-recessive lysosomal storage disorder caused by mutations in the ARSA gene. While interventional trials often use untreated siblings as controls, the genotype-phenotype correlation is only partly understood, and the variability of the clinical course between siblings is unclear with some evidence for a discrepant clinical course in juvenile patients. The aim of this study was to systematically investigate the phenotypic variation in MLD siblings in comparison to the variability in a larger MLD cohort and to case reports published in literature. RESULTS: Detailed clinical information was available from 12 sibling-pairs (3 late-infantile, 9 juvenile) and 61 single patients (29 late-infantile, 32 juvenile). Variability of age at onset was similar between the siblings and randomly chosen pairs of the remaining cohort (no statistically different Euclidean distances). However, in children with juvenile MLD both the type of first symptoms and the dynamic of the disease were less variable between siblings compared to the general cohort. In late-infantile patients, type of first symptoms and dynamic of disease were similarly homogeneous between siblings and the whole MLD cohort. Thirteen published case reports of families with affected siblings with MLD are presented with similar findings. CONCLUSIONS: In a systematic analysis of phenotypic variation in families with MLD, siblings with the late-infantile form showed a similar variability as unrelated pairs of children with late-infantile MLD, whereas siblings with juvenile MLD showed a more homogeneous phenotype regarding type of first symptoms and disease evolution in comparison to unrelated children with juvenile MLD, but not regarding their age at onset. These results are highly relevant with respect to the evaluation of treatment effects and for counseling of families with affected siblings.


Asunto(s)
Leucodistrofia Metacromática/diagnóstico por imagen , Leucodistrofia Metacromática/genética , Cognición/fisiología , Estudios de Asociación Genética , Genotipo , Humanos , Espectroscopía de Resonancia Magnética , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...