Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4306, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474518

RESUMEN

Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).


Asunto(s)
Citrus , Xanthomonas , Humanos , Filogenia , Xanthomonas/genética , Genómica , Citrus/microbiología , Enfermedades de las Plantas/microbiología
2.
Evol Appl ; 15(10): 1621-1638, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36330298

RESUMEN

One promising avenue for reconciling the goals of crop production and ecosystem preservation consists in the manipulation of beneficial biotic interactions, such as between insects and microbes. Insect gut microbiota can affect host fitness by contributing to development, host immunity, nutrition, or behavior. However, the determinants of gut microbiota composition and structure, including host phylogeny and host ecology, remain poorly known. Here, we used a well-studied community of eight sympatric fruit fly species to test the contributions of fly phylogeny, fly specialization, and fly sampling environment on the composition and structure of bacterial gut microbiota. Comprising both specialists and generalists, these species belong to five genera from to two tribes of the Tephritidae family. For each fly species, one field and one laboratory samples were studied. Bacterial inventories to the genus level were produced using 16S metabarcoding with the Oxford Nanopore Technology. Sample bacterial compositions were analyzed with recent network-based clustering techniques. Whereas gut microbiota were dominated by the Enterobacteriaceae family in all samples, microbial profiles varied across samples, mainly in relation to fly identity and sampling environment. Alpha diversity varied across samples and was higher in the Dacinae tribe than in the Ceratitinae tribe. Network analyses allowed grouping samples according to their microbial profiles. The resulting groups were very congruent with fly phylogeny, with a significant modulation of sampling environment, and with a very low impact of fly specialization. Such a strong imprint of host phylogeny in sympatric fly species, some of which share much of their host plants, suggests important control of fruit flies on their gut microbiota through vertical transmission and/or intense filtering of environmental bacteria.

3.
Sci Rep ; 12(1): 695, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027584

RESUMEN

In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission. We demonstrate that the DNA-B component is not required for systemic movement and symptom development of PepYVMLV (non-strict association), but that its association produces more severe symptoms including growth arrest and plant death. The increased virulence is associated with a higher viral DNA accumulation in plant tissues, an increase in the number of contaminated nuclei of the phloem parenchyma and in the transmission rate by B. tabaci. Our results suggest that the association of a DNA-B component with the otherwise monopartite PepYVMLV is a key factor of its emergence.


Asunto(s)
Begomovirus/genética , Begomovirus/patogenicidad , ADN Viral/genética , ADN Viral/metabolismo , Enfermedades de las Plantas/virología , Plantas/virología , Virulencia/genética , Animales , Hemípteros/virología , Plantas/metabolismo
4.
Sci Rep ; 11(1): 21280, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711837

RESUMEN

Emerging viral diseases of plants are recognised as a growing threat to global food security. However, little is known about the evolutionary processes and ecological factors underlying the emergence and success of viruses that have caused past epidemics. With technological advances in the field of ancient genomics, it is now possible to sequence historical genomes to provide a better understanding of viral plant disease emergence and pathogen evolutionary history. In this context, herbarium specimens represent a valuable source of dated and preserved material. We report here the first historical genome of a crop pathogen DNA virus, a 90-year-old African cassava mosaic virus (ACMV), reconstructed from small RNA sequences bearing hallmarks of small interfering RNAs. Relative to tip-calibrated dating inferences using only modern data, those performed with the historical genome yielded both molecular evolution rate estimates that were significantly lower, and lineage divergence times that were significantly older. Crucially, divergence times estimated without the historical genome appeared in discordance with both historical disease reports and the existence of the historical genome itself. In conclusion, our study reports an updated time-frame for the history and evolution of ACMV and illustrates how the study of crop viral diseases could benefit from natural history collections.


Asunto(s)
Begomovirus/genética , Evolución Molecular , Manihot/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , ARN de Planta/genética , Teorema de Bayes , Begomovirus/clasificación , Genoma Viral , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Filogenia , Análisis de Secuencia de ADN
5.
PLoS Pathog ; 17(7): e1009714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324594

RESUMEN

Over the past decade, ancient genomics has been used in the study of various pathogens. In this context, herbarium specimens provide a precious source of dated and preserved DNA material, enabling a better understanding of plant disease emergences and pathogen evolutionary history. We report here the first historical genome of a crop bacterial pathogen, Xanthomonas citri pv. citri (Xci), obtained from an infected herbarium specimen dating back to 1937. Comparing the 1937 genome within a large set of modern genomes, we reconstructed their phylogenetic relationships and estimated evolutionary parameters using Bayesian tip-calibration inferences. The arrival of Xci in the South West Indian Ocean islands was dated to the 19th century, probably linked to human migrations following slavery abolishment. We also assessed the metagenomic community of the herbarium specimen, showed its authenticity using DNA damage patterns, and investigated its genomic features including functional SNPs and gene content, with a focus on virulence factors.


Asunto(s)
Citrus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/historia , Enfermedades de las Plantas/microbiología , Xanthomonas , Genoma Bacteriano , Historia del Siglo XX , Mauricio , Filogenia , Xanthomonas/genética
6.
J Cell Sci ; 134(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34085697

RESUMEN

The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Arsénico , Arsenitos , Proteínas de Saccharomyces cerevisiae , Arsenitos/toxicidad , Agregado de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
BMC Microbiol ; 20(1): 296, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004016

RESUMEN

BACKGROUND: Asiatic Citrus Canker, caused by Xanthomonas citri pv. citri, severely impacts citrus production worldwide and hampers international trade. Considerable regulatory procedures have been implemented to prevent the introduction and establishment of X. citri pv. citri into areas where it is not present. The effectiveness of this surveillance largely relies on the availability of specific and sensitive detection protocols. Although several PCR- or real-time PCR-based methods are available, most of them showed analytical specificity issues. Therefore, we developed new conventional and real-time quantitative PCR assays, which target a region identified by comparative genomic analyses, and compared them to existing protocols. RESULTS: Our assays target the X. citri pv. citri XAC1051 gene that encodes for a putative transmembrane protein. The real-time PCR assay includes an internal plant control (5.8S rDNA) for validating the assay in the absence of target amplification. A receiver-operating characteristic approach was used in order to determine a reliable cycle cut-off for providing accurate qualitative results. Repeatability, reproducibility and transferability between real-time devices were demonstrated for this duplex qPCR assay (XAC1051-2qPCR). When challenged with an extensive collection of target and non-target strains, both assays displayed a high analytical sensitivity and specificity performance: LOD95% = 754 CFU ml- 1 (15 cells per reaction), 100% inclusivity, 97.2% exclusivity for XAC1051-2qPCR; LOD95% = 5234 CFU ml- 1 (105 cells per reaction), 100% exclusivity and inclusivity for the conventional PCR. Both assays can detect the target from naturally infected citrus fruit. Interestingly, XAC1051-2qPCR detected X. citri pv. citri from herbarium citrus samples. The new PCR-based assays displayed enhanced analytical sensitivity and specificity when compared with previously published PCR and real-time qPCR assays. CONCLUSIONS: We developed new valuable detection assays useful for routine diagnostics and surveillance of X. citri pv. citri in citrus material. Their reliability was evidenced through numerous trials on a wide range of bacterial strains and plant samples. Successful detection of the pathogen was achieved from both artificially and naturally infected plants, as well as from citrus herbarium samples, suggesting that these assays will have positive impact both for future applied and academic research on this bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Citrus/microbiología , Proteínas de la Membrana/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Xanthomonas/genética , Benchmarking , ADN Bacteriano/genética , Expresión Génica , Humanos , Enfermedades de las Plantas/microbiología , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Reproducibilidad de los Resultados , Xanthomonas/aislamiento & purificación
8.
J Hepatol ; 71(4): 783-792, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31207266

RESUMEN

BACKGROUND & AIMS: T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis. METHODS: Mdr2-/- mice were crossed with transgenic K14-OVAp mice, which express an MHC class I restricted ovalbumin peptide on biliary epithelial cells (Mdr2-/-xK14-OVAp). T cell-mediated cholangitis was induced by the adoptive transfer of antigen-specific CD8+ T cells. BA levels were quantified using a targeted liquid chromatography-mass spectrometry-based approach. RESULTS: T cell-induced cholangitis resulted in reduced levels of unconjugated BAs in the liver and significantly increased serum and hepatic levels of conjugated BAs. Genes responsible for BA synthesis and uptake were downregulated and expression of the bile salt export pump was increased. The transferred antigen-specific CD8+ T cells alone were able to induce these changes, as demonstrated using Mdr2-/-xK14-OVAp recipient mice on the Rag1-/- background. Mechanistically, we showed by depletion experiments that alterations in BA metabolism were partly mediated by the proinflammatory cytokines TNF and IFN-γ in an FXR-dependent manner, a process that in vitro required cell contact between T cells and hepatocytes. CONCLUSION: Whereas it is known that BA metabolism is dysregulated in sepsis and related conditions, we have shown that T cells are able to control the synthesis and metabolism of BAs, a process which depends on TNF and IFN-γ. Understanding the effect of lymphocytes on BA metabolism will help in the design of combined treatment strategies for cholestatic liver diseases. LAY SUMMARY: Dysregulation of bile acid metabolism and T cells can contribute to the development of cholangiopathies. Before targeting T cells for the treatment of cholangiopathies, it should be determined whether they exert protective effects on bile acid metabolism. Herein, we demonstrate that T cell-induced cholangitis resulted in decreased levels of harmful unconjugated bile acids. T cells were able to directly control synthesis and metabolism of bile acids, a process which was dependent on the proinflammatory cytokines TNF and IFN-γ. Understanding the effect of lymphocytes on bile acid metabolism will help in the design of combined treatment strategies for cholestatic liver diseases.


Asunto(s)
Ácidos y Sales Biliares , Colangitis , Interferón gamma/inmunología , Linfocitos T , Factor de Necrosis Tumoral alfa/inmunología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/biosíntesis , Ácidos y Sales Biliares/metabolismo , Vías Biosintéticas/inmunología , Colangitis/inmunología , Colangitis/metabolismo , Colangitis/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Serpinas/genética , Linfocitos T/metabolismo , Linfocitos T/patología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
9.
Sci Rep ; 5: 17696, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26625871

RESUMEN

Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B. tabaci raised the question of their possible replication in the vector. We monitored two major TYLCV strains, Mild (Mld) and Israel (IL), in the invasive B. tabaci Middle East-Asia Minor 1 cryptic species, during and after the viral acquisition, within two timeframes (0-144 hours or 0-20 days). TYLCV DNA was quantified using real-time PCR, and the complementary DNA strand of TYLCV involved in viral replication was specifically quantified using anchored real-time PCR. The DNA of both TYLCV strains accumulated exponentially during acquisition but remained stable after viral acquisition had stopped. Neither replication nor vertical transmission were observed. In conclusion, our quantification of the viral loads and complementary strands of both Mld and IL strains of TYLCV in B. tabaci point to an efficient accumulation and preservation mechanism, rather than to a dynamic equilibrium between replication and degradation.


Asunto(s)
Begomovirus/metabolismo , ADN Viral/metabolismo , Hemípteros/virología , Insectos Vectores/virología , Animales , Hemípteros/metabolismo , Insectos Vectores/metabolismo , Enfermedades de las Plantas/virología
10.
Mol Cell Endocrinol ; 381(1-2): 115-23, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23896434

RESUMEN

How Retinoid X receptors (RXR) and thyroid hormone receptors (TR) interact on negative TREs and whether RXR subtype specificity is determinant in such regulations is unknown. In a set of functional studies, we analyzed RXR subtype effects in T3-dependent repression of hypothalamic thyrotropin-releasing hormone (Trh). Two-hybrid screening of a hypothalamic paraventricular nucleus cDNA bank revealed specific, T3-dependent interaction of TRs with RXRß. In vivo chromatin immuno-precipitation showed recruitment of RXRs to the TRE-site 4 region of the Trh promoter in the absence of T3. In vivo overexpression of RXRα in the mouse hypothalamus heightened T3-independent Trh transcription, whereas RXRß overexpression abrogated this activity. Loss of function of RXRα and ß by shRNAs induced inverse regulations. Thus, RXRα and RXRß display specific roles in modulating T3-dependent regulation of Trh. These results provide insight into the actions of these different TR heterodimerization partners within the context of a negatively regulated gene.


Asunto(s)
Receptor alfa X Retinoide/metabolismo , Receptor beta X Retinoide/metabolismo , Hormona Liberadora de Tirotropina/genética , Transcripción Genética , Animales , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Desnudos , Núcleo Hipotalámico Paraventricular/metabolismo , Regiones Promotoras Genéticas , Receptor alfa X Retinoide/genética , Receptor beta X Retinoide/genética , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Triyodotironina/fisiología
11.
Viruses ; 4(12): 3665-88, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23235470

RESUMEN

In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition.


Asunto(s)
Begomovirus/patogenicidad , Vectores de Enfermedades , Hemípteros/crecimiento & desarrollo , Hemípteros/virología , Enfermedades de las Plantas/virología , Animales , Begomovirus/clasificación , Hemípteros/clasificación , Epidemiología Molecular , Reunión
12.
BMC Microbiol ; 12 Suppl 1: S10, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22375811

RESUMEN

BACKGROUND: Maternally inherited bacterial symbionts infecting arthropods have major implications on host ecology and evolution. Among them, the genus Arsenophonus is particularly characterized by a large host spectrum and a wide range of symbiotic relationships (from mutualism to parasitism), making it a good model to study the evolution of host-symbiont associations. However, few data are available on the diversity and distribution of Arsenophonus within host lineages. Here, we propose a survey on Arsenophonus diversity in whitefly species (Hemiptera), in particular the Bemisia tabaci species complex. This polyphagous insect pest is composed of genetic groups that differ in many ecological aspects. They harbor specific bacterial communities, among them several lineages of Arsenophonus, enabling a study of the evolutionary history of these bacteria at a fine host taxonomic level, in association to host geographical range and ecology. RESULTS: Among 152 individuals, our analysis identified 19 allelic profiles and 6 phylogenetic groups, demonstrating this bacterium's high diversity. These groups, based on Arsenophonus phylogeny, correlated with B. tabaci genetic groups with two exceptions reflecting horizontal transfers. None of three genes analyzed provided evidence of intragenic recombination, but intergenic recombination events were detected. A mutation inducing a STOP codon on one gene in a strain infecting one B. tabaci genetic group was also found. Phylogenetic analyses of the three concatenated loci revealed the existence of two clades of Arsenophonus. One, composed of strains found in other Hemiptera, could be the ancestral clade in whiteflies. The other, which regroups strains found in Hymenoptera and Diptera, may have been acquired more recently by whiteflies through lateral transfers. CONCLUSIONS: This analysis of the genus Arsenophonus revealed a diversity within the B. tabaci species complex which resembles that reported on the larger scale of insect taxonomy. We also provide evidence for recombination events within the Arsenophonus genome and horizontal transmission of strains among insect taxa. This work provides further insight into the evolution of the Arsenophonus genome, the infection dynamics of this bacterium and its influence on its insect host's ecology.


Asunto(s)
Enterobacteriaceae/clasificación , Enterobacteriaceae/aislamiento & purificación , Hemípteros/microbiología , Animales , Codón de Terminación , ADN Bacteriano/análisis , Enterobacteriaceae/genética , Enterobacteriaceae/fisiología , Transferencia de Gen Horizontal , Variación Genética , Hemípteros/clasificación , Hemípteros/fisiología , Filogenia , Simbiosis
13.
EMBO Rep ; 7(10): 1035-9, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16936638

RESUMEN

Transcriptional control of hypothalamic thyrotropin-releasing hormone (TRH) integrates central regulation of the hypothalamo-hypophyseal-thyroid axis and hence thyroid hormone (triiodothyronine (T(3))) homeostasis. The two beta thyroid hormone receptors, TRbeta1 and TRbeta2, contribute to T(3) feedback on TRH, with TRbeta1 having a more important role in the activation of TRH transcription. How TRbeta1 fulfils its role in activating TRH gene transcription is unknown. By using a yeast two-hybrid screening of a mouse hypothalamic complementary DNA library, we identified a novel partner for TRbeta1, hepatitis virus B X-associated protein 2 (XAP2), a protein first identified as a co-chaperone protein. TR-XAP2 interactions were TR isoform specific, being observed only with TRbeta1, and were enhanced by T(3) both in yeast and mammalian cells. Furthermore, small inhibitory RNA-mediated knockdown of XAP2 in vitro affected the stability of TRbeta1. In vivo, siXAP2 abrogated specifically TRbeta1-mediated (but not TRbeta2) activation of hypothalamic TRH transcription. This study provides the first in vivo demonstration of a regulatory, physiological role for XAP2.


Asunto(s)
Hipotálamo/metabolismo , Proteínas/metabolismo , Proteínas/fisiología , Hormona Liberadora de Tirotropina/metabolismo , Activación Transcripcional , Animales , Regulación de la Expresión Génica , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Distribución Tisular , Transfección
14.
J Mol Endocrinol ; 36(3): 517-30, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16720720

RESUMEN

Unliganded thyroid hormone receptors (apoTRs) repress transcription of hormone-activated genes by recruiting corepressors to the promoters. In contrast, on promoters containing so-called negative thyroid hormone response elements (nTREs), apoTRs activate transcription. A number of different molecular mechanisms have been described as to how apoTRs activate transcription varying with the target gene of the study. Here we demonstrate that thyroid hormone regulates the transcription of the Necdin gene, a developmentally regulated candidate gene for the genomic imprinting-associated neurobehavioural disorder, Prader-Willi syndrome. ApoTRs activate Necdin expression through an nTRE in its promoter, downstream of the transcription start site. The nTRE of the Necdin gene resembles the nTREs of the TSHbeta genes of the hypothalamus-pituitary-thyroid axis in the sequence, position in the promoter, and mode of activation. We show that this group of nTRE-driven genes shares the requirements for binding of the retinoic X receptor and nuclear receptor corepressor/silencing mediator of retinoid and thyroid hormone receptors (NCoR/SMRT) for full ligand-independent activation, whereas there is no need for association of the p160 family of coactivators. In accordance with the requirement for corepressors, Necdin expression is influenced by deacetylase activity, suggesting that histone deacetylases and corepressors as well could function as activators of transcription, depending on the promoter context.


Asunto(s)
Regulación de la Expresión Génica , Proteínas del Tejido Nervioso , Proteínas Nucleares , Receptores de Hormona Tiroidea/metabolismo , Elementos de Respuesta , Transcripción Genética , Triyodotironina/metabolismo , Animales , Línea Celular , Pollos , Humanos , Ácidos Hidroxámicos/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Inhibidores de la Síntesis de la Proteína/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
15.
Endocrinology ; 145(5): 2337-45, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14726446

RESUMEN

Thyroid hormones (TH) are essential regulators of vertebrate development and metabolism. Central mechanisms governing their production have evolved, with the beta-TH receptor (TRbeta) playing a key regulatory role in the negative feedback effects of circulating TH levels on production of hypothalamic TRH and hypophyseal TSH. Both TRbeta-isoforms (TRbeta1 and TRbeta2) are expressed in the hypothalamus and pituitary. However, their respective roles in TH-dependent transcriptional regulation of TRH are undefined. We confirmed the preferential role of TRbeta vs. TRalpha isoforms in TRH regulation in wild-type mice in vivo by using the TRbeta preferential agonist GC-1. We next determined the effects of tissue-specific rescue of TRbeta1 and TRbeta2 isoforms by somatic gene transfer in hypothalami of TRbeta null (TRbeta(-/-)) mice. TH-dependent TRH transcriptional repression was impaired in TRbeta(-/-) mice, but was restored by cotransfection of either TRbeta1 or TRbeta2 into the hypothalamus. TRbeta1, but not TRbeta2, displayed a role in ligand-independent activation. In situ hybridization was used to examine endogenous TRH expression in the paraventricular nucleus of the hypothalamus of TRbeta(-/-) or TRalpha null (TRalpha(o/o)) mice under different thyroid states. In contrast to published data on TRbeta2(-/-) mice, we found that both ligand-independent TRH activation and ligand-dependent TRH repression were severely impaired in TRbeta(-/-) mice. This study thus provides functional in vivo data showing that both TRbeta1 and TRbeta2 isoforms have specific roles in regulating TRH transcription.


Asunto(s)
Regulación de la Expresión Génica , Hipotálamo/química , Receptores beta de Hormona Tiroidea/fisiología , Hormona Liberadora de Tirotropina/genética , Animales , Luciferasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/análisis , Proteínas Recombinantes de Fusión , Receptores beta de Hormona Tiroidea/deficiencia , Receptores beta de Hormona Tiroidea/genética , Transcripción Genética/genética , Transfección , Triyodotironina/farmacología
16.
Mol Endocrinol ; 16(7): 1652-66, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12089358

RESUMEN

The beta thyroid hormone receptor (TRbeta), but not TRalpha1, plays a specific role in mediating T(3)-dependent repression of hypothalamic TRH transcription. To investigate the structural basis of isoform specificity, we compared the transcriptional regulation and DNA binding obtained with chimeric and N-terminally deleted TRs. Using in vivo transfection assays to follow hypothalamic TRH transcription in the mouse brain, we found that TRbeta1 and chimeras with the TRbeta1 N terminus did not affect either transcriptional activation or repression from the rat TRH promoter, whereas N-terminally deleted TRbeta1 impaired T(3)-dependent repression. TRalpha1 or chimeras with the TRalpha1 N terminus reduced T(3)-independent transcriptional activation and blocked T(3)-dependent repression of transcription. Full deletion of the TRalpha1 N terminus restored ligand-independent activation of transcription. No TR isoform specificity was seen after transcription from a positive thyroid hormone response element. Gel mobility assays showed that all TRs tested bound specifically to the main negative thyroid hormone response element in the TRH promoter (site 4). Addition of neither steroid receptor coactivator 1 nor nuclear extracts from the hypothalamic paraventricular nuclei revealed any TR isoform specificity in binding to site 4. Thus N-terminal sequences specify TR T(3)-dependent repression of TRH transcription but not DNA recognition, emphasizing as yet unknown neuron-specific contributions to protein-promoter interactions in vivo.


Asunto(s)
Retroalimentación Fisiológica , Hipotálamo/fisiología , Receptores de Hormona Tiroidea/metabolismo , Hormona Liberadora de Tirotropina/genética , Transcripción Genética , Animales , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Histona Acetiltransferasas , Ratones , Ratones Endogámicos , Coactivador 1 de Receptor Nuclear , Regiones Promotoras Genéticas , Isoformas de Proteínas , Ratas , Receptores de Hormona Tiroidea/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos de Respuesta , Especificidad por Sustrato , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea , Hormona Liberadora de Tirotropina/metabolismo , Factores de Transcripción/metabolismo , Triyodotironina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...