Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Nucleic Acids Res ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813825

RESUMEN

Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.

2.
Nat Struct Mol Biol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664566

RESUMEN

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

3.
Nucleic Acids Res ; 52(9): 4889-4905, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38407474

RESUMEN

Acetylation of lysine 16 of histone H4 (H4K16ac) stands out among the histone modifications, because it decompacts the chromatin fiber. The metazoan acetyltransferase MOF (KAT8) regulates transcription through H4K16 acetylation. Antibody-based studies had yielded inconclusive results about the selectivity of MOF to acetylate the H4 N-terminus. We used targeted mass spectrometry to examine the activity of MOF in the male-specific lethal core (4-MSL) complex on nucleosome array substrates. This complex is part of the Dosage Compensation Complex (DCC) that activates X-chromosomal genes in male Drosophila. During short reaction times, MOF acetylated H4K16 efficiently and with excellent selectivity. Upon longer incubation, the enzyme progressively acetylated lysines 12, 8 and 5, leading to a mixture of oligo-acetylated H4. Mathematical modeling suggests that MOF recognizes and acetylates H4K16 with high selectivity, but remains substrate-bound and continues to acetylate more N-terminal H4 lysines in a processive manner. The 4-MSL complex lacks non-coding roX RNA, a critical component of the DCC. Remarkably, addition of RNA to the reaction non-specifically suppressed H4 oligo-acetylation in favor of specific H4K16 acetylation. Because RNA destabilizes the MSL-nucleosome interaction in vitro we speculate that RNA accelerates enzyme-substrate turn-over in vivo, thus limiting the processivity of MOF, thereby increasing specific H4K16 acetylation.


Asunto(s)
Proteínas de Drosophila , Histona Acetiltransferasas , Código de Histonas , Animales , Masculino , Acetilación , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares , Nucleosomas/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Biochem Soc Trans ; 52(1): 423-429, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38329186

RESUMEN

Extracts from Drosophila preblastoderm embryos (DREX) form the basis of a powerful in vitro chromatin reconstitution system that assembles entire genomes into complex chromatin with physiological nucleosome spacing and polymer condensation. As the zygotic genome has not yet been activated in preblastoderm embryos, the reconstitution extract lacks endogenous transcription factors (TFs) and the RNA polymerase machinery. At the same time, it contains high levels of ATP-dependent nucleosome sliding enzymes that render the reconstituted chromatin dynamic. The naïve chromatin can be used to determine the intrinsic DNA binding properties of exogenous, usually recombinant TFs (or DNA binding proteins in general) in a complex chromatin context. Recent applications of the system include the description of cooperation and competition of Drosophila pioneer TFs for composite binding sites, and the characterization of nucleosome interactions of mammalian pioneer TFs in the heterologous system.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Nucleosomas , Drosophila/metabolismo , Genómica , Mamíferos/metabolismo
5.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106060

RESUMEN

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. We investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner qualitatively agree with our data. We speculate that 'monkey-bar' mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

6.
Mol Cell ; 83(23): 4318-4333.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37989319

RESUMEN

RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.


Asunto(s)
Proteínas de Drosophila , ARN Helicasas , Animales , Humanos , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis , ARN/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/genética , Factores de Transcripción/metabolismo
7.
Appl Opt ; 62(27): 7127-7138, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37855566

RESUMEN

The propagation of laser radiation over long distances can be significantly affected by atmospheric extinction due to precipitation as well as aerosol particles and molecules. The knowledge of the contribution of precipitation is critical to the operation of a variety of laser-based systems. The study of high-power laser transmission around 1 µm is of particular interest because several atmospheric transmission windows are located in this region. To investigate the effect of adverse weather conditions on laser transmission, free-space laser transmission experiments are conducted on the DLR test range in Lampoldshausen, Germany. A high-power laser with a wavelength of 1.03 µm is used for the transmission measurements in combination with calibrated power monitors. Local weather conditions are continuously monitored by meteorological instruments during the experiments. Extinction coefficients are derived from transmission measurements showing that the extinction for snow is 7 times higher than for rain, and the extinction for drizzle/rain is 4 times higher than for rain at a given precipitation rate of 1 mm/h. For a mixture of rain and snow, the extinction is comparable to that of rain, indicating that the water content strongly influences the optical properties and thus the extinction of laser radiation in mixed precipitation. A good relationship is found between the measured extinction coefficient and visibility for drizzle and rain and a slightly larger scatter of the data for snow. Furthermore, measured extinction coefficients are compared to the extinction coefficients based on the experimental size distributions of precipitation particles and geometric optics. A reasonable agreement is obtained for rain, with no improvement taking the forward-scattering into the detector aperture into account, and a much better agreement is obtained for snow when the forward-scattering contribution is included.

8.
Nucleic Acids Res ; 51(17): 9039-9054, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37602401

RESUMEN

MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Cromosoma X/genética
9.
Nature ; 619(7969): 385-393, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407816

RESUMEN

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , ADN , Histonas , Factores de Transcripción ARNTL/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/genética , ADN/metabolismo , Secuencias Hélice-Asa-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación Alostérica , Leucina Zippers , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Multimerización de Proteína
10.
Proc Natl Acad Sci U S A ; 120(19): e2208389120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126701

RESUMEN

Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to reproductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young.


Asunto(s)
Cambio Climático , Rasgos de la Historia de Vida , Animales , Femenino , Estaciones del Año , Pollos , Reproducción
11.
J Anim Ecol ; 91(9): 1797-1812, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35675093

RESUMEN

Timing of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations. We combined 51 long-term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small-scale region, large-scale region and the whole North Atlantic. In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small-scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales. In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter-year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black-legged kittiwake Rissa tridactyla was the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver. Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.


Asunto(s)
Charadriiformes , Animales , Cambio Climático , Estaciones del Año
12.
Life Sci Alliance ; 5(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688487

RESUMEN

The evolution of brain complexity correlates with an increased expression of long, noncoding (lnc) RNAs in neural tissues. Although prominent examples illustrate the potential of lncRNAs to scaffold and target epigenetic regulators to chromatin loci, only few cases have been described to function during brain development. We present a first functional characterization of the lncRNA LINC01322, which we term RUS for "RNA upstream of Slitrk3." The RUS gene is well conserved in mammals by sequence and synteny next to the neurodevelopmental gene Slitrk3. RUS is exclusively expressed in neural cells and its expression increases during neuronal differentiation of mouse embryonic cortical neural stem cells. Depletion of RUS locks neuronal precursors in an intermediate state towards neuronal differentiation resulting in arrested cell cycle and increased apoptosis. RUS associates with chromatin in the vicinity of genes involved in neurogenesis, most of which change their expression upon RUS depletion. The identification of a range of epigenetic regulators as specific RUS interactors suggests that the lncRNA may mediate gene activation and repression in a highly context-dependent manner.


Asunto(s)
ARN Largo no Codificante , Animales , Cromatina/genética , Cromatina/metabolismo , Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Neurogénesis/genética , Neuronas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
13.
Microorganisms ; 10(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35744663

RESUMEN

Large-scale microbial industrial fermentations have significantly higher absolute pressure and dissolved CO2 concentrations than otherwise comparable laboratory-scale processes. Yet the effect of increased dissolved CO2 (dCO2) levels is rarely addressed in the literature. In the current work, we have investigated the impact of industrial levels of dCO2 (measured as the partial pressure of CO2, pCO2) in an Escherichia coli-based fed-batch process producing the human milk oligosaccharide 2'-fucosyllactose (2'-FL). The study evaluated the effect of high pCO2 levels in both carbon-limited (C-limited) and carbon/nitrogen-limited (C/N-limited) fed-batch processes. High-cell density cultures were sparged with 10%, 15%, 20%, or 30% CO2 in the inlet air to cover and exceed the levels observed in the industrial scale process. While the 10% enrichment was estimated to achieve similar or higher pCO2 levels as the large-scale fermentation it did not impact the performance of the process. The product and biomass yields started being affected above 15% CO2 enrichment, while 30% impaired the cultures completely. Quantitative proteomics analysis of the C-limited process showed that 15% CO2 enrichment affected the culture on the protein level, but to a much smaller degree than expected. A more significant impact was seen in the dual C/N limited process, which likely stemmed from the effect pCO2 had on nitrogen availability. The results demonstrated that microbial cultures can be seriously affected by elevated CO2 levels, albeit at higher levels than expected.

14.
Mol Ecol ; 31(23): 6297-6307, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-33460462

RESUMEN

Telomeres are protective caps at the end of eukaryotic chromosomes that shorten with age and in response to stressful or resource-demanding conditions. Their length predicts individual health and lifespan across a wide range of animals, but whether the observed positive association between telomere length and lifespan is environmentally induced, or set at conception due to a shared genetic basis, has not been tested in wild animals. We applied quantitative genetic "animal models" to longitudinal telomere measurements collected over a 10-year period from individuals of a wild seabird (common tern; Sterna hirundo) with known pedigree. We found no variation in telomere shortening with age among individuals at the phenotypic and genetic level, and only a small permanent environmental effect on adult telomere length. Instead, we found telomere length to be highly heritable and strongly positively genetically correlated with lifespan. Such heritable differences between individuals that are set at conception may present a hitherto underappreciated component of variation in somatic state.


Asunto(s)
Charadriiformes , Longevidad , Animales , Longevidad/genética , Animales Salvajes/genética , Aves/genética , Acortamiento del Telómero/genética , Charadriiformes/genética , Telómero/genética
15.
Nucleic Acids Res ; 49(13): 7602-7617, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181732

RESUMEN

Metazoan transcription factors distinguish their response elements from a large excess of similar sequences. We explored underlying principles of DNA shape read-out and factor cooperativity in chromatin using a unique experimental system. We reconstituted chromatin on Drosophila genomes in extracts of preblastoderm embryos, mimicking the naïve state of the zygotic genome prior to developmental transcription activation. We then compared the intrinsic binding specificities of three recombinant transcription factors, alone and in combination, with GA-rich recognition sequences genome-wide. For MSL2, all functional elements reside on the X chromosome, allowing to distinguish physiological elements from non-functional 'decoy' sites. The physiological binding profile of MSL2 is approximated through interaction with other factors: cooperativity with CLAMP and competition with GAF, which sculpts the profile by occluding non-functional sites. An extended DNA shape signature is differentially read out in chromatin. Our results reveal novel aspects of target selection in a complex chromatin environment.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Sistema Libre de Células , ADN/química , ADN/metabolismo , Drosophila/embriología , Drosophila/genética , Genoma de los Insectos , Genómica , Histonas/metabolismo , Masculino , Unión Proteica , Cromosoma X
16.
Genes Dev ; 35(13-14): 1055-1070, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34140353

RESUMEN

The dosage compensation complex (DCC) of Drosophila identifies its X-chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and noncoding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active but contribute differently to X specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX motifs are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a nonproductive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a stable chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of protein, DNA, and RNA components.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Compensación de Dosificación (Genética) , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromosomas Sexuales/metabolismo , Factores de Transcripción/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
17.
Bio Protoc ; 11(5): e3946, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33796620

RESUMEN

RNA-protein interactions are often mediated by dedicated canonical RNA binding domains. However, interactions through non-canonical domains with unknown specificity are increasingly observed, raising the question how RNA targets are recognized. Knowledge of the intrinsic RNA binding specificity contributes to the understanding of target selectivity and function of an individual protein. The presented in vitro RNA immunoprecipitation assay (vitRIP) uncovers intrinsic RNA binding specificities of isolated proteins using the total cellular RNA pool as a library. Total RNA extracted from cells or tissues is incubated with purified recombinant proteins, RNA-protein complexes are immunoprecipitated and bound transcripts are identified by deep sequencing or quantitative RT-PCR. Enriched RNA classes and the nucleotide frequency in these RNAs inform on the intrinsic specificity of the recombinant protein. The simple and versatile protocol can be adapted to other RNA binding proteins and total RNA libraries from any cell type or tissue. Graphic abstract: Figure 1. Schematic of the in vitro RNA immunoprecipitation (vitRIP) protocol.

18.
Dtsch Arztebl Int ; 118(1-2): 10, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33750526
19.
Curr Opin Cell Biol ; 70: 1-9, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33217681

RESUMEN

Histone variants are a universal means to alter the biochemical properties of nucleosomes, implementing local changes in chromatin structure. H2A.Z, one of the most conserved histone variants, is incorporated into chromatin by SWR1-type nucleosome remodelers. Here, we summarize recent advances toward understanding the transcription-regulatory roles of H2A.Z and of the remodeling enzymes that govern its dynamic chromatin incorporation. Tight transcriptional control guaranteed by H2A.Z nucleosomes depends on the context provided by other histone variants or chromatin modifications, such as histone acetylation. The functional cooperation of SWR1-type remodelers with NuA4 histone acetyltransferase complexes, a recurring theme during evolution, is structurally implemented by species-specific strategies.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/metabolismo , Cromatina , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Nucleosomas , Proteínas de Saccharomyces cerevisiae/genética
20.
Nat Mater ; 20(1): 38-42, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32690913

RESUMEN

Electron-spin qubits have long coherence times suitable for quantum technologies. Spin-orbit coupling promises to greatly improve spin qubit scalability and functionality, allowing qubit coupling via photons, phonons or mutual capacitances, and enabling the realization of engineered hybrid and topological quantum systems. However, despite much recent interest, results to date have yielded short coherence times (from 0.1 to 1 µs). Here we demonstrate ultra-long coherence times of 10 ms for holes where spin-orbit coupling yields quantized total angular momentum. We focus on holes bound to boron acceptors in bulk silicon 28, whose wavefunction symmetry can be controlled through crystal strain, allowing direct control over the longitudinal electric dipole that causes decoherence. The results rival the best electron-spin qubits and are 104 to 105 longer than previous spin-orbit qubits. These results open a pathway to develop new artificial quantum systems and to improve the functionality and scalability of spin-based quantum technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...