Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 175(2): e13904, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37002828

RESUMEN

The photosynthetic apparatus of lichen photobionts has been well-characterized by chlorophyll fluorescence analysis (e.g., by pulse amplitude modulation [PAM]), which provides a proxy of the activity of photosystem II (PSII) and its antenna. However, such kinetics are unable to directly characterize photosystem I (PSI) activity and the associated alternative electron pathways that may be involved in photoprotection. Instead, PSI can be probed in vivo by near-infrared absorption, measured at the same time as standard chlorophyll fluorescence (e.g., using the WALZ Dual PAM). Here, we used the Dual PAM to investigate cyclic electron flow and photoprotection in a range of mostly temperate lichens sampled from shaded to more open microhabitats. Sun species displayed lower acceptor side limitation of PSI (Y[NA]) early in illumination when compared to shade species, indicative of higher flavodiiron-mediated pseudocyclic electron flow. In response to high irradiance, some lichens accumulate melanin, and Y[NA] was lower and NAD(P)H dehydrogenase (NDH-2)-type cyclic flow was higher in melanised than pale forms. Furthermore, non-photochemical quenching (NPQ) was higher and faster relaxing in shade than sun species, while all lichens displayed high rates of photosynthetic cyclic electron flow. In conclusion, our data suggest that (1) low acceptor side limitation of PSI is important for sun-exposed lichens; (2) NPQ helps shade species tolerate brief exposure to high irradiance; and (3) cyclic electron flow is a prominent feature of lichens regardless of habitat, although NDH-2-type flow is associated with high light acclimation.


Asunto(s)
Clorofila , Luz , Transporte de Electrón , Clorofila/metabolismo , Fluorescencia , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
2.
Plants (Basel) ; 11(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36297748

RESUMEN

Lichens often grow in microhabitats where they absorb more light than they can use for fixing carbon, and this excess energy can cause the formation of harmful reactive oxygen species (ROS). Lichen mycobionts can reduce ROS formation by synthesizing light-screening pigments such as melanins in the upper cortex, while the photobionts can dissipate excess energy radiationlessly using non-photochemical quenching (NPQ). An inherent problem with using fluorimetry techniques to compare NPQ in pale and melanised thalli is that NPQ is normally measured through a variously pigmented upper cortex. Here we used a dissection technique to remove the lower cortices and medullas of Lobaria pulmonaria and Crocodia aurata and then measure NPQ from the underside of the thallus. Results confirmed that NPQ can be satisfactorily assessed with a standard fluorimeter by taking measurement from above using intact thalli. However, photobionts from the bottom of the photobiont layer tend to have slightly lower rates of PSII activity and lower NPQ than those at the top, i.e., display mild "shade" characteristics. Analysis of pale and melanised thalli of other species indicates that NPQ in melanised thalli can be higher, similar or lower than pale thalli, probably depending on the light history of the microhabitat and presence of other tolerance mechanisms.

3.
Life (Basel) ; 12(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36143422

RESUMEN

Mitochondria play a key role in providing energy to cells. These organelles are constantly undergoing dynamic processes of fusion and fission that change in stressful conditions. The role of mitochondrial fusion in wheat root cells was studied using Mdivi-1, an inhibitor of the mitochondrial fragmentation protein Drp1. The effect of the inhibitor was studied on mitochondrial dynamics in the roots of wheat seedlings subjected to a wounding stress, simulated by excision. Treatment of the stressed roots with the inhibitor increased the size of the mitochondria, enhanced their functional activity, and elevated their membrane potentials. Mitochondrial fusion was accompanied by a decrease in ROS formation and associated cell damage. Exposure to Mdivi-1 also upregulated genes encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an energy sensor AMP-dependent protein sucrose non-fermenting-related kinase (SnRK1), suggesting that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to mitigate the effects of stress.

4.
Fungal Biol ; 125(11): 879-885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34649674

RESUMEN

Our previous work showed that many lichenized Ascomycetes can generate hydroxyl radicals using quinone-based extracellular redox cycling. During cycling, hydroquinones must be formed and subsequently regenerated from quinones using a quinone reductase (QR). However, we also showed that no simple correlation exists between QR activity and rates of hydroxyl radical formation. To further investigate the role of QR in hydroxyl radical formation, three model lichen species, Leptogium furfuraceum, Lasallia pustulata and Peltigera membranacea were selected for further investigation. All possessed QR activity and could metabolize quinones, and both Leptogium furfuraceum and Lasallia pustulata actively produced hydroxyl radicals. By contrast, P. membranacea produced almost no hydroxyl radicals, and although the lichen readily metabolized quinones, no hydroquinone production was detected. Peltigera had laccase (LAC) activity that was c. 50 times higher than in the other two species, suggesting that LAC rapidly oxidizes the hydroquinones, preventing radical formation deriving from auto-oxidation. It appears that in some lichens hydroxyl radical formation is blocked by the presence of high redox enzyme activity. QR from P. didactyla was studied further and found to display similar properties to the enzyme from free-living fungi, although it possessed an unusually high molecular mass (c. 62 kDa).


Asunto(s)
Ascomicetos , Quinona Reductasas , Ascomicetos/metabolismo , Oxidación-Reducción , Quinona Reductasas/metabolismo
5.
Phytochemistry ; 112: 122-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25027646

RESUMEN

Apoplastic class III peroxidases (EC 1.11.1.7) play key roles in the response of plants to pathogen infection and abiotic stresses, including wounding. Wounding is a common stress for plants that can be caused by insect or animal grazing or trampling, or result from agricultural practices. Typically, mechanical damage to a plant immediately induces a rapid release and activation of apoplastic peroxidases, and an oxidative burst of reactive oxygen species (ROS), followed by the upregulation of peroxidase genes. We discuss how plants control the expression of peroxidases genes upon wounding, and also the sparse information on peroxidase-mediated signal transduction pathways. Evidence reviewed here suggests that in many plants production of the ROS that comprise the initial oxidative burst results from a complex interplay of peroxidases with other apoplastic enzymes. Later responses following wounding include various forms of tissue healing, for example through peroxidase-dependent suberinization, or cell death. Limited data suggest that ROS-mediated death signalling during the wound response may involve the peroxidase network, together with other redox molecules. In conclusion, the ability of peroxidases to both generate and scavenge ROS plays a key role in the involvement of these enigmatic enzymes in plant stress tolerance.


Asunto(s)
Peroxidasas/metabolismo , Células Vegetales/enzimología , Fenómenos Fisiológicos de las Plantas , Muerte Celular , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...