Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 870451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530509

RESUMEN

Embryonic-to-neonatal development in chicken is characterized by high rates of lipid oxidation in the late-term embryonic liver and high rates of de novo lipogenesis in the neonatal liver. This rapid remodeling of hepatic mitochondrial and cytoplasmic networks occurs without symptoms of hepatocellular stress. Our objective was to characterize the metabolic phenotype of the embryonic and neonatal liver and explore whether these metabolic signatures are preserved in primary cultured hepatocytes. Plasma and liver metabolites were profiled using mass spectrometry based metabolomics on embryonic day 18 (ed18) and neonatal day 3 (nd3). Hepatocytes from ed18 and nd3 were isolated and cultured, and treated with insulin, glucagon, growth hormone and corticosterone to define hormonal responsiveness and determine their impacts on mitochondrial metabolism and lipogenesis. Metabolic profiling illustrated the clear transition from the embryonic liver relying on lipid oxidation to the neonatal liver upregulating de novo lipogenesis. This metabolic phenotype was conserved in the isolated hepatocytes from the embryos and the neonates. Cultured hepatocytes from the neonatal liver also maintained a robust response to insulin and glucagon, as evidenced by their contradictory effects on lipid oxidation and lipogenesis. In summary, primary hepatocytes from the embryonic and neonatal chicken could be a valuable tool to investigate mechanisms regulating hepatic mitochondrial metabolism and de novo lipogenesis.

2.
Poult Sci ; 99(12): 6317-6325, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33248547

RESUMEN

This study was conducted to evaluate potential hormonal mechanisms associated with the stress response, thermoregulation, and metabolic changes of broiler chickens exposed to high environmental temperature. Nine hundred 1-day-old male broiler chicks (Ross 708) were placed in floor pens and raised to 24 d. At 24 d, chicks were randomly assigned to 1 of 2 treatments, heat stress (HS) or no HS, and allocated into battery cages in 8 batteries (10 birds per cage, 2 cages per battery). On day 31, blood was collected prior to HS and analyzed using an iSTAT analyzer. Half of the batteries were then moved into 2 rooms with an elevated ambient temperature (35°C) for 8 h. The remaining batteries stayed in the thermoneutral rooms with an ambient temperature of 22°C. Beginning at 5 h after the initiation of HS, blood was collected and analyzed using an iSTAT analyzer, birds were euthanized, and hypothalamus and pituitary samples were collected (16 birds per treatment), flash frozen, and stored at -80°C until RNA extraction. Reverse transcription-quantitative PCR was used to compare mRNA levels of key corticotropic and thyrotrophic genes in the hypothalamus and pituitary. Levels of mRNA for each target gene were normalized to PGK1 (pituitary) and GAPDH (hypothalamus) mRNA. Differences were determined using mixed model ANOVA. HS decreased (P < 0.05) feed intake, BW, bicarbonate, potassium, CO2, and triiodothyronine, while it increased mortality, glucose, pH, plasma thyroxine, and corticosterone. Expression of pituitary corticotropin-releasing hormone receptor 1 was downregulated (P < 0.001), while corticotropin-releasing hormone receptor 2 mRNA levels were higher (P = 0.001) in HS birds. HS increased expression of thyroid hormone receptor ß (P = 0.01) (2.8-fold) and thyroid stimulating hormone ß (P = 0.009) (1.4-fold). HS did not affect levels of mRNA of genes evaluated in the hypothalamus. Results showed that HS significantly affected both the thyrotropic and corticotropic axes. Understanding the role and regulation of these pathways during HS will allow researchers to better evaluate management strategies to combat HS.


Asunto(s)
Pollos , Respuesta al Choque Térmico , Hipotálamo , Hipófisis , Animales , Análisis Químico de la Sangre , Pollos/sangre , Pollos/genética , Pollos/crecimiento & desarrollo , Regulación de la Expresión Génica/fisiología , Respuesta al Choque Térmico/fisiología , Calor , Hipotálamo/fisiología , Masculino , Hipófisis/fisiología , ARN Mensajero/genética , Distribución Aleatoria
3.
Sci Rep ; 8(1): 11578, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30054506

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 7(1): 13129, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030616

RESUMEN

Maternal intake of eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (22:6 n-3) has been associated with reduced adiposity in children, suggesting the possibility to program adipose development through dietary fatty acids before birth. This study determined if enriching the maternal diet in fish oil, the primary source of EPA and DHA, affected adipose development in offspring. Broiler chickens were used because they are obesity-prone, and because fatty acids provided to the embryo can be manipulated through the hen diet. Hens were fed diets supplemented (2.8% wt:wt) with corn oil (CO; n-6) or fish oil (FO; n-3) for 28 d. Chicks from both maternal diet groups were fed the same diet after hatch. Maternal FO consumption enriched chick adipose tissue in EPA and DHA and reduced adiposity by promoting more, but smaller, adipocytes. This adipocyte profile was paralleled by upregulated expression of the adipogenic regulator PPARG and its co-activator PPARGC1B, and reduced expression of LPL. Proteomics identified 95 differentially abundant proteins between FO and CO adipose tissue, including components of glucose metabolism, lipid droplet trafficking, and cytoskeletal organization. These results demonstrate that the maternal dietary fatty acid profile programs offspring adipose development.


Asunto(s)
Adiposidad/efectos de los fármacos , Aceites de Pescado/uso terapéutico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Pollos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Femenino , Lipoproteína Lipasa/metabolismo , Masculino , PPAR gamma/metabolismo
5.
Curr Dev Nutr ; 1(11): e001644, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29955687

RESUMEN

Epidemiologic studies associate perinatal intake of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) with reduced adiposity in children, suggesting that these fatty acids may alter adipose tissue development. The objective of this study was to determine whether enriching the perinatal diet in EPA and DHA reduces fat deposition in young chicks. Cobb 500 broiler chicks were fed isocaloric diets containing fat (8% wt:wt) from fish oil (FO), lard, canola oil, or flaxseed oil from 7 to 30 d of age. Adiposity (abdominal fat pad weight/body weight) at 30 d was not significantly affected by diet, but FO significantly reduced adipocyte size, increasing the abundance of small adipocytes. Plasma nonesterified fatty acid concentrations suggest that reduced adipocyte size was due, in part, to enhanced mobilization of fatty acids from adipose tissue. Our work indicates that dietary EPA and DHA effectively reduce the size of developing adipocytes in juveniles, which may limit adipose deposition and provide metabolic benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...