Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Clin Cancer Res ; 29(10): 1916-1928, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36917693

RESUMEN

PURPOSE: Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody. EXPERIMENTAL DESIGN: [225Ac]DOTA-YS5 was developed, and its therapeutic efficiency was tested on cell-derived (22Rv1, DU145), and patient-derived (LTL-545, LTL484) prostate cancer xenograft models. Biodistribution studies were carried out on 22Rv1 tumor xenograft models to confirm the targeting efficacy. Toxicity analysis of the [225Ac]DOTA-YS5 was carried out on nu/nu mice to study short-term (acute) and long-term (chronic) toxicity. RESULTS: Biodistribution study shows that [225Ac]DOTA-YS5 agent delivers high levels of radiation to the tumor tissue (11.64% ± 1.37%ID/g, 28.58% ± 10.88%ID/g, 29.35% ± 7.76%ID/g, and 31.78% ± 5.89%ID/g at 24, 96, 168, and 408 hours, respectively), compared with the healthy organs. [225Ac]DOTA-YS5 suppressed tumor size and prolonged survival in cell line-derived and patient-derived xenograft models. Toxicity analysis revealed that the 0.5 µCi activity levels showed toxicity to the kidneys, likely due to redistribution of daughter isotope 213Bi. CONCLUSIONS: [225Ac]DOTA-YS5 suppressed the growth of cell-derived and patient-derived xenografts, including prostate-specific membrane antigen-positive and prostate-specific membrane antigen-deficient models. Overall, this preclinical study confirms that [225Ac]DOTA-YS5 is a highly effective treatment and suggests feasibility for clinical translation of CD46-targeted radioligand therapy in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Radioisótopos , Ratones , Masculino , Animales , Humanos , Radioisótopos/uso terapéutico , Actinio/uso terapéutico , Bismuto , Radioinmunoterapia , Partículas alfa/uso terapéutico , Distribución Tisular , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/tratamiento farmacológico , Proteína Cofactora de Membrana
2.
ACS Appl Mater Interfaces ; 14(45): 50569-50582, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36318757

RESUMEN

Tumoral uptake of large-size nanoparticles is mediated by the enhanced permeability and retention (EPR) effect, with variable accumulation and heterogenous tumor tissue penetration depending on the tumor phenotype. The performance of nanocarriers via specific targeting has the potential to improve imaging contrast and therapeutic efficacy in vivo with increased deep tissue penetration. To address this hypothesis, we designed and synthesized prostate cancer-targeting starPEG nanocarriers (40 kDa, 15 nm), [89Zr]PEG-(DFB)3(ACUPA)1 and [89Zr]PEG-(DFB)1(ACUPA)3, with one or three prostate-specific membrane antigen (PSMA)-targeting ACUPA ligands. The in vitro PSMA binding affinity and in vivo pharmacokinetics of the targeted nanocarriers were compared with a nontargeted starPEG, [89Zr]PEG-(DFB)4, in PSMA+ PC3-Pip and PSMA- PC3-Flu cells, and xenografts. Increasing the number of ACUPA ligands improved the in vitro binding affinity of PEG-derived polymers to PC3-Pip cells. While both PSMA-targeted nanocarriers significantly improved tissue penetration in PC3-Pip tumors, the multivalent [89Zr]PEG-(DFB)1(ACUPA)3 showed a remarkably higher PC3-Pip/blood ratio and background clearance. In contrast, the nontargeted [89Zr]PEG-(DFB)4 showed low EPR-mediated accumulation with poor tumor tissue penetration. Overall, ACUPA conjugated targeted starPEGs significantly improve tumor retention with deep tumor tissue penetration in low EPR PC3-Pip xenografts. These data suggest that PSMA targeting with multivalent ACUPA ligands may be a generally applicable strategy to increase nanocarrier delivery to prostate cancer. These targeted multivalent nanocarriers with high tumor binding and low healthy tissue retention could be employed in imaging and therapeutic applications.


Asunto(s)
Antígenos de Superficie , Polímeros , Neoplasias de la Próstata , Humanos , Masculino , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Ligandos , Polímeros/uso terapéutico , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo
3.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235126

RESUMEN

Objective: Positron emission tomography (PET) imaging is a powerful non-invasive method to determine the in vivo behavior of biomolecules. Determining biodistribution and pharmacokinetic (PK) properties of targeted therapeutics can enable a better understanding of in vivo drug mechanisms such as tumor uptake, off target accumulation and clearance. Zirconium-89 (89Zr) is a readily available tetravalent PET-enabling radiometal that has been used to evaluate the biodistribution and PK of monoclonal antibodies. In the current study, we performed in vitro and in vivo characterization of 89Zr-lintuzumab, a radiolabeled anti-CD33 antibody, as a model to evaluate the in vivo binding properties in preclinical models of AML. Methods: Lintuzumab was conjugated to p-SCN-Bn-deferoxamine (DFO) and labeled with 89Zr using a 5:1 µCi:µg specific activity at 37 °C for 1h. The biological activity of 89Zr-lintuzumab was evaluated in a panel of CD33 positive cells using flow cytometry. Fox Chase SCID mice were injected with 2 × 106 OCI-AML3 cells into the right flank. After 12 days, a cohort of mice (n = 4) were injected with 89Zr-lintuzumab via tail vein. PET/CT scans of mice were acquired on days 1, 2, 3 and 7 post 89Zr-lintuzumab injection. To demonstrate 89Zr-lintuzumab specific binding to CD33 expressing tumors in vivo, a blocking study was performed. This cohort of mice (n = 4) was injected with native lintuzumab and 24 h later 89Zr-lintuzumab was administered. This group was imaged 3 and 7 days after injection of 89Zr-lintuzumab. A full ex vivo biodistribution study on both cohorts was performed on day 7. The results from the PET image and ex vivo biodistribution studies were compared. Results: Lintuzumab was successfully radiolabeled with 89Zr resulting in a 99% radiochemical yield. The 89Zr-lintuzumab radioconjugate specifically binds CD33 positive cells in a similar manner to native lintuzumab as observed by flow cytometry. PET imaging revealed high accumulation of 89Zr-lintuzumab in OCI-AML3 tumors within 24h post-injection of the radioconjugate. The 89Zr-lintuzumab high tumor uptake remains for up to 7 days. Tumor analysis of the PET data using volume of interest (VOI) showed significant blocking of 89Zr-lintuzumab in the group pre-treated with native lintuzumab (pre-blocked group), thus indicating specific targeting of CD33 on OCI-AML3 cells in vivo. The tumor uptake findings from the PET imaging study are in agreement with those from the ex vivo biodistribution results. Conclusions: PET imaging of 89Zr-lintuzumab shows high specific uptake in CD33 positive human OCI-AML3 tumors. The results from the image study agree with the observations from the ex vivo biodistribution study. Our findings collectively suggest that PET imaging using 89Zr-lintuzumab could be a powerful drug development tool to evaluate binding properties of anti-CD33 monoclonal antibodies in preclinical cancer models.


Asunto(s)
Deferoxamina , Circonio , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Deferoxamina/química , Deferoxamina/farmacología , Humanos , Ratones , Ratones SCID , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Circonio/química
4.
Nat Commun ; 13(1): 1219, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264559

RESUMEN

A major obstacle to achieving long-term antiretroviral (ART) free remission or functional cure of HIV infection is the presence of persistently infected cells that establish a long-lived viral reservoir. HIV largely resides in anatomical regions that are inaccessible to routine sampling, however, and non-invasive methods to understand the longitudinal tissue-wide burden of HIV persistence are urgently needed. Positron emission tomography (PET) imaging is a promising strategy to identify and characterize the tissue-wide burden of HIV. Here, we assess the efficacy of using immunoPET imaging to characterize HIV reservoirs and identify anatomical foci of persistent viral transcriptional activity using a radiolabeled HIV Env-specific broadly neutralizing antibody, 89Zr-VRC01, in HIV-infected individuals with detectable viremia and on suppressive ART compared to uninfected controls (NCT03729752). We also assess the relationship between PET tracer uptake in tissues and timing of ART initiation and direct HIV protein expression in CD4 T cells obtained from lymph node biopsies. We observe significant increases in 89Zr-VRC01 uptake in various tissues (including lymph nodes and gut) in HIV-infected individuals with detectable viremia (N = 5) and on suppressive ART (N = 5) compared to uninfected controls (N = 5). Importantly, PET tracer uptake in inguinal lymph nodes in viremic and ART-suppressed participants significantly and positively correlates with HIV protein expression measured directly in tissue. Our strategy may allow non-invasive longitudinal characterization of residual HIV infection and lays the framework for the development of immunoPET imaging in a variety of other infectious diseases.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Linfocitos T CD4-Positivos , Infecciones por VIH/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones , Carga Viral , Viremia/diagnóstico por imagen
5.
Cancer Res ; 81(4): 1076-1086, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323380

RESUMEN

PARP inhibitors are approved for treatment of cancers with BRCA1 or BRCA2 defects. In this study, we prepared and characterized a very long-acting PARP inhibitor. Synthesis of a macromolecular prodrug of talazoparib (TLZ) was achieved by covalent conjugation to a PEG40kDa carrier via a ß-eliminative releasable linker. A single injection of the PEG∼TLZ conjugate was as effective as ∼30 daily oral doses of TLZ in growth suppression of homologous recombination-defective tumors in mouse xenografts. These included the KT-10 Wilms' tumor with a PALB2 mutation, the BRCA1-deficient MX-1 triple-negative breast cancer, and the BRCA2-deficient DLD-1 colon cancer; the prodrug did not inhibit an isogenic DLD-1 tumor with wild-type BRCA2. Although the half-life of PEG∼TLZ and released TLZ in the mouse was only ∼1 day, the exposure of released TLZ from a single safe, effective dose of the prodrug exceeded that of oral TLZ given daily over one month. µPET/CT imaging showed high uptake and prolonged retention of an 89Zr-labeled surrogate of PEG∼TLZ in the MX-1 BRCA1-deficient tumor. These data suggest that the long-lasting antitumor effect of the prodrug is due to a combination of its long t 1/2, the high exposure of TLZ released from the prodrug, increased tumor sensitivity upon continued exposure, and tumor accumulation. Using pharmacokinetic parameters of TLZ in humans, we designed a long-acting PEG∼TLZ for humans that may be superior in efficacy to daily oral TLZ and would be useful for treatment of PARP inhibitor-sensitive cancers in which oral medications are not tolerated. SIGNIFICANCE: These findings demonstrate that a single injection of a long-acting prodrug of the PARP inhibitor talazoparib in murine xenografts provides tumor suppression equivalent to a month of daily dosing of talazoparib.


Asunto(s)
Trastornos por Deficiencias en la Reparación del ADN/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ftalazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/tratamiento farmacológico , Trastornos por Deficiencias en la Reparación del ADN/genética , Preparaciones de Acción Retardada/uso terapéutico , Femenino , Genes BRCA2 , Genes del Tumor de Wilms , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Neoplasias/genética , Ftalazinas/química , Polietilenglicoles/química , Polietilenglicoles/uso terapéutico , Profármacos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/química , Circonio/uso terapéutico
6.
Clin Cancer Res ; 27(5): 1305-1315, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33293372

RESUMEN

PURPOSE: We recently identified CD46 as a novel therapeutic target in prostate cancer. In this study, we developed a CD46-targeted PET radiopharmaceutical, [89Zr]DFO-YS5, and evaluated its performance for immunoPET imaging in murine prostate cancer models. EXPERIMENTAL DESIGN: [89Zr]DFO-YS5 was prepared and its in vitro binding affinity for CD46 was measured. ImmunoPET imaging was conducted in male athymic nu/nu mice bearing DU145 [AR-, CD46+, prostate-specific membrane antigen-negative (PSMA-)] or 22Rv1 (AR+, CD46+, PSMA+) tumors, and in NOD/SCID gamma mice bearing patient-derived adenocarcinoma xenograft, LTL-331, and neuroendocrine prostate cancers, LTL-331R and LTL-545. RESULTS: [89Zr]DFO-YS5 binds specifically to the CD46-positive human prostate cancer DU145 and 22Rv1 xenografts. In biodistribution studies, the tumor uptake of [89Zr]DFO-YS5 was 13.3 ± 3.9 and 11.2 ± 2.5 %ID/g, respectively, in DU145 and 22Rv1 xenografts, 4 days postinjection. Notably, [89Zr]DFO-YS5 demonstrated specific uptake in the PSMA- and AR-negative DU145 model. [89Zr]DFO-YS5 also showed uptake in the patient-derived LTL-331 and -331R models, with particularly high uptake in the LTL-545 neuroendocrine prostate cancer tumors (18.8 ± 5.3, 12.5 ± 1.8, and 32 ± 5.3 %ID/g in LTL-331, LTL-331R, and LTL-545, respectively, at 4 days postinjection). CONCLUSIONS: [89Zr]DFO-YS5 is an excellent PET imaging agent across a panel of prostate cancer models, including in both adenocarcinoma and neuroendocrine prostate cancer, both cell line- and patient-derived xenografts, and both PSMA-positive and -negative tumors. It demonstrates potential for clinical translation as an imaging agent, theranostic platform, and companion biomarker in prostate cancer.


Asunto(s)
Adenocarcinoma/patología , Inmunoconjugados/química , Proteína Cofactora de Membrana/inmunología , Imagen Molecular/métodos , Tumores Neuroendocrinos/patología , Neoplasias de la Próstata/patología , Radiofármacos/farmacocinética , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Animales , Apoptosis , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/metabolismo , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/química
7.
PET Clin ; 16(1): 89-97, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33160926

RESUMEN

Total-body PET enables high-sensitivity imaging with dramatically improved signal-to-noise ratio. These enhanced performance characteristics allow for decreased PET scanning times acquiring data "total-body wide" and can be leveraged to decrease the amount of radiotracer required, thereby permitting more frequent imaging or longer imaging periods during radiotracer decay. Novel approaches to PET imaging of infectious diseases are emerging, including those that directly visualize pathogens in vivo and characterize concomitant immune responses and inflammation. Efforts to develop these imaging approaches are hampered by challenges of traditional imaging platforms, which may be overcome by novel total-body PET strategies.


Asunto(s)
Enfermedades Transmisibles/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen de Cuerpo Entero/métodos , Humanos , Relación Señal-Ruido , Tiempo
8.
Int J Radiat Oncol Biol Phys ; 109(2): 527-539, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007434

RESUMEN

PURPOSE: Transforming growth factor ß (TGFß) promotes cell survival by endorsing DNA damage repair and mediates an immunosuppressive tumor microenvironment. Thus, TGFß activation in response to radiation therapy is potentially targetable because it opposes therapeutic control. Strategies to assess this potential in the clinic are needed. METHODS AND MATERIALS: We evaluated positron emission tomography (PET) to image 89Zr -fresolimumab, a humanized TGFß neutralizing monoclonal antibody, as a means to detect TGFß activation in intracranial tumor models. Pathway activity of TGFß was validated by immunodetection of phosphorylated SMAD2 and the TGFß target, tenascin. The contribution of TGFß to radiation response was assessed by Kaplan-Meier survival analysis of mice bearing intracranial murine tumor models GL261 and SB28 glioblastoma and brain-adapted 4T1 breast cancer (4T1-BrA) treated with TGFß neutralizing monoclonal antibody, 1D11, and/or focal radiation (10 Gy). RESULTS: 89Zr-fresolimumab PET imaging detected engineered, physiological, and radiation-induced TGFß activation, which was confirmed by immunostaining of biological markers. GL261 glioblastoma tumors had a greater PET signal compared with similar-sized SB28 glioblastoma tumors, whereas the widespread PET signal of 4T1-BrA intracranial tumors was consistent with their highly dispersed histologic distribution. Survival of mice bearing intracranial tumors treated with 1D11 neutralizing antibody alone was similar to that of mice treated with control antibody, whereas 1D11 improved survival when given in combination with focal radiation. The extent of survival benefit of a combination of radiation and 1D11 was associated with the degree of TGFß activity detected by PET. CONCLUSIONS: This study demonstrates that 89Zr-fresolimumab PET imaging detects radiation-induced TGFß activation in tumors. Functional imaging indicated a range of TGFß activity in intracranial tumors, but TGFß blockade provided survival benefit only in the context of radiation treatment. This study provides further evidence that radiation-induced TGFß activity opposes therapeutic response to radiation.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Tomografía de Emisión de Positrones , Factor de Crecimiento Transformador beta/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Factor de Crecimiento Transformador beta/inmunología
9.
Mol Imaging Biol ; 22(1): 105-114, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31065895

RESUMEN

PURPOSE: Tumor necrosis factor alpha (TNFα) drives inflammation and bone degradation in patients with rheumatoid arthritis (RA). Some RA patients experience a rapid clinical response to TNFα inhibitors such as certolizumab pegol (CZP) while other patients show limited to no response. Current methods for imaging RA have limited sensitivity and do not assist in the selection of patients most likely to respond to immune-mediated therapy. Herein, we developed a novel positron emission tomography (PET) radiotracer for immuno-PET imaging of TNFα in transgenic human TNFα-expressing mice. PROCEDURES: CZP was modified with p-isothiocyanatobenzyl-deferoxamine (DFO) and radiolabeled with Zr-89. The biological activity of [89Zr]DFO-CZP was evaluated by HPLC and binding assay using human recombinant TNFα (hTNFα). The feasibility of specific immuno-PET imaging of human TNFα was assessed in a transgenic mouse model of RA that expresses human TNFα. This model resembles the progression of RA in humans by maintaining lower levels of circulating hTNFα and exhibits chronic arthritis in the forepaw and hind paw joints. The dosimetry of [89Zr]DFO-CZP in humans was estimated using microPET/CT imaging in Sprague Dawley rats. RESULTS: [89Zr]DFO-CZP was isolated with radiolabeling yields of 85 ± 6 % (n = 5) and specific activities ranging from 74 to 185 MBq/mg (n = 5). Following size exclusion purification, the radiochemical purity of [89Zr]DFO-CZP was greater than 97 %. [89Zr]DFO-CZP retained high immunoreactivity with more than 95 % of the radioactivity shifted into higher molecular weight complexes. Images showed increasing uptake of the tracer in forepaw and hind paw joints with disease progression. No uptake was observed in the model previously administered with an excess amount of unmodified CZP and in normal control mice, demonstrating in vivo specific uptake of [89Zr]DFO-CZP. CONCLUSION: The feasibility of immuno-PET imaging of human TNFα with [89Zr]DFO-CZP has been demonstrated in a preclinical model of RA.


Asunto(s)
Artritis Experimental/patología , Artritis Reumatoide/patología , Certolizumab Pegol/farmacocinética , Inmunoconjugados/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos/farmacocinética , Factor de Necrosis Tumoral alfa/metabolismo , Circonio/farmacocinética , Animales , Antirreumáticos/farmacocinética , Artritis Experimental/diagnóstico por imagen , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Ratas Sprague-Dawley , Distribución Tisular
10.
Mol Cancer Ther ; 19(2): 673-679, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31744896

RESUMEN

The goal was to develop and characterize a companion diagnostic for the releasable PEG40kDa∼SN-38 oncology drug, PLX038, that would identify tumors susceptible to high accumulation of PLX038. PEG conjugates of the zirconium ligand desferroxamine B (DFB) of similar size and charge to PLX038 were prepared that contained one or four DFB, as well as one that contained three SN-38 moieties and one DFB. Uptake and associated kinetic parameters of the 89Zr-labeled nanocarriers were determined in tumor and normal tissues in mice using µPET/CT imaging. The data were fit to physiologically based pharmacokinetic models to simulate the mass-time profiles of distribution of conjugates in the tissues of interest. The time-activity curves for normal tissues showed high levels at the earliest time of measurement due to vascularization, followed by a monophasic loss. In tumors, levels were initially lower than in normal tissues but increased to 9% to 14% of injected dose over several days. The efflux half-life in tumors was very long, approximately 400 hours, and tumor levels remained at about 10% injected dose 9 days after injection. Compared with diagnostic liposomes, the PEG nanocarriers have a longer serum half-life, are retained in tumors at higher levels, remain there longer, and afford higher tumor exposure. The small PEG40kDa nanocarriers studied here show properties for passive targeting of tumors that are superior than most nanoparticles and might be effective probes to identify tumors susceptible to similar size therapeutic nanocarriers such as PLX038.


Asunto(s)
Polietilenglicoles/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Radioisótopos/uso terapéutico , Circonio/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Pharm ; 16(9): 3831-3841, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31381351

RESUMEN

Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.


Asunto(s)
Antígenos de Superficie/metabolismo , Terapia por Captura de Neutrón de Boro/métodos , Ácidos Borónicos/química , Ácidos Borónicos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Neoplasias de la Próstata/radioterapia , Animales , Compuestos de Boro/química , Compuestos de Boro/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ácido Edético/análogos & derivados , Ácido Edético/farmacocinética , Isótopos de Galio , Radioisótopos de Galio , Humanos , Concentración 50 Inhibidora , Ligandos , Masculino , Ratones , Ratones Desnudos , Oligopéptidos/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Pharm ; 15(11): 5089-5102, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30226780

RESUMEN

The safety and efficacy of anticancer antibody-drug conjugates (ADCs) depend on the selection of tumor-targeting monoclonal antibody (mAb), linker, and drug, as well as their specific chemical arrangement and linkage chemistry. In this study, we used a heterobifunctional cross-linker to conjugate docetaxel (DX) to cetuximab (CET) or panitumumab (PAN). The resulting ADCs were investigated for their in vitro EGFR-specific cytotoxicity and in vivo anticancer activity. Reaction conditions, such as reducing agent, time, temperature, and alkylation buffer, were optimized to yield potent and stable ADCs with consistent batch-to-batch drug-to-antibody ratios (DARs). ADCs were synthesized with DARs from 0.4 to 3.0, and all retained their EGFR affinity and specificity after modification. ADCs were sensitive to cell surface wildtype EGFR expression, demonstrating more cytotoxicity in EGFR-expressing A431 and MDA-MB-231 cell lines compared to U87MG cells. A431 tumor-bearing mice treated once weekly for four weeks with 100 mg/kg cetuximab-docetaxel ADC (C-SC-DX, DAR 2.5) showed durable anticancer responses and improved overall survival compared to the same treatment regimen with 1 mg/kg DX, 100 mg/kg CET, or a combination 1 mg/kg DX and 100 mg/kg CET. New treatment options are emerging for patients with both wild-type and mutated EGFR-overexpressing cancers, and these studies highlight the potential role of EGFR-targeted ADC therapies as a promising new treatment option.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Cetuximab/química , Cetuximab/farmacología , Cetuximab/uso terapéutico , Reactivos de Enlaces Cruzados/química , Docetaxel/química , Docetaxel/farmacología , Docetaxel/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Humanos , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Ratones , Ratones Desnudos , Neoplasias/mortalidad , Neoplasias/patología , Panitumumab/química , Panitumumab/farmacología , Panitumumab/uso terapéutico , Análisis de Supervivencia , Distribución Tisular , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
13.
PLoS One ; 13(3): e0193832, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29513764

RESUMEN

The ability to non-invasively monitor tumor-infiltrating T cells in vivo could provide a powerful tool to visualize and quantify tumor immune infiltrates. For non-invasive evaluations in vivo, an anti-CD3 mAb was modified with desferrioxamine (DFO) and radiolabeled with zirconium-89 (Zr-89 or 89Zr). Radiolabeled 89Zr-DFO-anti-CD3 was tested for T cell detection using positron emission tomography (PET) in both healthy mice and mice bearing syngeneic bladder cancer BBN975. In vivo PET/CT and ex vivo biodistribution demonstrated preferential accumulation and visualization of tracer in the spleen, thymus, lymph nodes, and bone marrow. In tumor bearing mice, 89Zr-DFO-anti-CD3 demonstrated an 11.5-fold increase in tumor-to-blood signal compared to isotype control. Immunological profiling demonstrated no significant change to total T cell count, but observed CD4+ T cell depletion and CD8+ T cell expansion to the central and effector memory. This was very encouraging since a high CD8+ to CD4+ T cell ratio has already been associated with better patient prognosis. Ultimately, this anti-CD3 mAb allowed for in vivo imaging of homeostatic T cell distribution, and more specifically tumor-infiltrating T cells. Future applications of this radiolabeled mAb against CD3 could include prediction and monitoring of patient response to immunotherapy.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/inmunología , Animales , Anticuerpos , Butilhidroxibutilnitrosamina , Complejo CD3/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Deferoxamina , Citometría de Flujo , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Radioisótopos , Radiofármacos , Distribución Tisular , Neoplasias de la Vejiga Urinaria/patología , Circonio
14.
J Colloid Interface Sci ; 488: 240-245, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27835817

RESUMEN

HYPOTHESIS: Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. EXPERIMENTS: Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. FINDINGS: Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent.

15.
Mol Pharm ; 13(6): 1894-903, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27079967

RESUMEN

Monoclonal antibodies (mAbs) offer promise as effective tumor targeting and drug delivery agents for cancer therapy. However, comparative biological and clinical characteristics of mAbs targeting the same tumor-associated antigen (TAA) often differ widely. This study examined the characteristics of mAbs that impact tumor targeting using a panel of mAb clones specific to the cancer-associated cell-surface receptor and cancer stem cell marker CD44. CD44 mAbs were screened for cell-surface binding, antigen affinity, internalization, and CD44-mediated tumor uptake by CD44-positive A549 cells. It was hypothesized that high-affinity, rapidly internalizing CD44 mAbs would result in high tumor uptake and prolonged tumor retention. Although high-affinity clones rapidly bound and were internalized by A549 cells in vitro, an intermediate-affinity clone demonstrated significantly greater tumor uptake and retention than high-affinity clones in vivo. Systemic exposure, rather than high antigen affinity or rapid internalization, best associated with tumor targeting of CD44 mAbs in A549 tumor-bearing mice.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/inmunología , Receptores de Hialuranos/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos
16.
Bioconjug Chem ; 27(1): 207-16, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26699913

RESUMEN

A convenient method to prepare radioiodinated tetrazines was developed, such that a bioorthogonal inverse electron demand Diels-Alder reaction can be used to label biomolecules with iodine-125 for in vitro screening and in vivo biodistribution studies. The tetrazine was prepared by employing a high-yielding oxidative halo destannylation reaction that concomitantly oxidized the dihydrotetrazine precursor. The product reacts quickly and efficiently with trans-cyclooctene derivatives. Utility was demonstrated through antibody and hormone labeling experiments and by evaluating products using standard analytical methods, in vitro assays, and quantitative biodistribution studies where the latter was performed in direct comparison to Bolton-Hunter and direct iodination methods. The approach described provides a convenient and advantageous alternative to conventional protein iodination methods that can expedite preclinical development and evaluation of biotherapeutics.


Asunto(s)
Radioisótopos de Yodo/química , Marcaje Isotópico/métodos , Animales , Anticuerpos/química , Línea Celular Tumoral , Cristalografía por Rayos X , Reacción de Cicloadición , Ciclooctanos/química , Femenino , Compuestos Heterocíclicos/química , Humanos , Radioisótopos de Yodo/farmacocinética , Ratones Endogámicos C57BL , Receptor de Insulina/metabolismo , Distribución Tisular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/inmunología
17.
J Org Chem ; 80(14): 7117-25, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26030355

RESUMEN

A fluorous oxidant that can be used to introduce radioiodine into small molecules and proteins and generate iodinated tetrazines for bioorthogonal chemistry has been developed. The oxidant was prepared in 87% overall yield by combining a fluorous amine with tosyl chloride, followed by chlorination using aqueous sodium hypochlorite. A crystal structure of the oxidant, which is a fluorous analogue of chloramine-T, was obtained. The compound was shown to be stable for 7 days in EtOH and for longer than three months as a solid. The oxidant was effective at promoting the labeling of arylstannanes using [(125)I]NaI, where products were isolated in high specific activity in yields ranging from 46% to 86%. Similarly, iodinated biologically active proteins (e.g., thrombin) were successfully produced, as well as a radioiodinated tetrazine, through a concomitant oxidation-halodemetalation reaction. Because of its fluorous nature, unreacted oxidant and associated reaction byproducts can be removed quantitatively from reaction mixtures by passing solutions through fluorous solid phase extraction cartridges. This feature enables rapid and facile purification, which is critical when working with radionuclides and is similarly beneficial for general synthetic applications.


Asunto(s)
Cloraminas/química , Compuestos Heterocíclicos/síntesis química , Radioisótopos de Yodo/química , Oxidantes/química , Tetrazoles/síntesis química , Trombina/síntesis química , Compuestos de Tosilo/química , Cristalografía por Rayos X , Halogenación , Compuestos Heterocíclicos/química , Hipoclorito de Sodio/química , Extracción en Fase Sólida , Tetrazoles/química , Trombina/análogos & derivados , Trombina/química
18.
Dalton Trans ; 43(13): 4950-61, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24481236

RESUMEN

A series of C-hydroxy carborane derivatives of (S)-2-(3-((S)-5-amino-1-carboxypentyl)ureido)-pentanedioic acid were prepared as a new class of boron rich inhibitors of prostate specific membrane antigen (PSMA), which is overexpressed on prostate cancer tumours and metastases. Closo-, nido- and iodo-carborane conjugates were prepared and screened in vitro where the water soluble iodinated cluster had the highest affinity with an IC50 value (73.2 nM) that was comparable to a known PSMA inhibitor 2-(phosphonomethyl)-pentanedioic acid (PMPA, 63.9 nM). The radiolabeled analogue was prepared using (123)I and the biodistribution determined in a prostate cancer model derived from a PSMA positive cell line (LNCaP) at 1, 2, 4, 6 and 24 h post injection (n = 4 per time point). The results showed good initial tumour uptake of 4.17% at 1 h, which remained at that level only decreasing somewhat at 6 h (3.59%). At the latter time point tumour-to-blood and tumour-to-muscle ratios peaked at 3.47 at 25.52 respectively. There was significant off-target binding particularly in the liver and gall bladder and a surprising amount of deiodination in vivo. Notwithstanding, this work demonstrates that carboranes can be used to prepare potent ligands for PSMA creating the opportunity to develop a new class of BNCT agents for prostate cancer.


Asunto(s)
Compuestos de Boro , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Animales , Antígenos de Superficie/metabolismo , Compuestos de Boro/sangre , Compuestos de Boro/síntesis química , Compuestos de Boro/farmacocinética , Compuestos de Boro/farmacología , Línea Celular Tumoral , Vesícula Biliar/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Distribución Tisular
19.
Recent Results Cancer Res ; 194: 269-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22918764

RESUMEN

AIM: Puromycin has played an important role in our understanding of the eukaryotic ribosome and protein synthesis. It has been known for more than 40 years that this antibiotic is a universal protein synthesis inhibitor that acts as a structural analog of an aminoacyl-transfer RNA (aa-tRNA) in eukaryotic ribosomes. Due to the role of enzymes and their synthesis in situations of need (DNA damage, e.g., after chemo- or radiation therapy), determination of protein synthesis is important for control of antitumor therapy, to enhance long-term survival of tumor patients, and to minimize side-effects of therapy. Multiple attempts to reach this goal have been made through the last decades, mostly using radiolabeled amino acids, with limited or unsatisfactory success. The aim of this study is to estimate the possibility of determining protein synthesis ratios by using (68)Ga-DOTA-puromycin ((68)Ga-DOTA-Pur), [(3)H]tyrosine, and 2-fluoro-[(3)H]tyrosine and to estimate the possibility of different pathways due to the fluorination of tyrosine. METHODS: DOTA-puromycin was synthesized using a puromycin-tethered controlled-pore glass (CPG) support by the usual protocol for automated DNA and RNA synthesis following our design. (68)Ga was obtained from a (68)Ge/(68)Ga generator as described previously by Zhernosekov et al. (J Nucl Med 48:1741-1748, 2007). The purified eluate was used for labeling of DOTA-puromycin at 95°C for 20 min. [(3)H]Tyrosine and 2-fluoro-[(3)H]tyrosine of the highest purity available were purchased from Moravek (Bera, USA) or Amersham Biosciences (Hammersmith, UK). In vitro uptake and protein incorporation as well as in vitro inhibition experiments using cycloheximide to inhibit protein synthesis were carried out for all three substances in DU145 prostate carcinoma cells (ATCC, USA). (68)Ga-DOTA-Pur was additionally used for µPET imaging of Walker carcinomas and AT1 tumors in rats. Dynamic scans were performed for 45 min after IV application (tail vein) of 20-25 MBq (68)Ga-DOTA-Pur. RESULTS: No significant differences in the behavior of [(3)H]tyrosine and 2-fluoro-[(3)H]tyrosine were observed. Uptake of both tyrosine derivatives was decreased by inhibition of protein synthesis, but only to a level of 45-55% of initial uptake, indicating no direct link between tyrosine uptake and protein synthesis. In contrast, (68)Ga-DOTA-Pur uptake was directly linked to ribosomal activity and, therefore, to protein synthesis. (68)Ga-DOTA-Pur µPET imaging in rats revealed high tumor-to-background ratios and clearly defined regions of interest in the investigated tumors. SUMMARY: Whereas the metabolic pathway of (68)Ga-DOTA-Pur is directly connected with the process of protein synthesis and shows high tumor uptake during µPET imaging, neither [(3)H]tyrosine nor 2-fluoro-[(3)H]tyrosine can be considered useful for determination of protein synthesis.


Asunto(s)
Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo/química , Biosíntesis de Proteínas , Puromicina , Radiofármacos , Tritio , Tirosina/metabolismo , Animales , Radioisótopos de Galio/aislamiento & purificación , Masculino , Neoplasias Experimentales/metabolismo , Tomografía de Emisión de Positrones , Biosíntesis de Proteínas/efectos de los fármacos , Radiofármacos/síntesis química , Ratas
20.
Recent Results Cancer Res ; 194: 301-17, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22918766

RESUMEN

The epidermal growth factor receptor (EGFR) is a rational target of anticancer therapies due to its overexpression in a variety of malignant epithelial tumors. Nevertheless, this antigen is also present in normal tissues. Consequently, monoclonal antibodies which selectively bind to EGFR-overexpressing tumors will be choice drug candidates for development of radioimmunoconjugates (RIC). Nimotuzumab (h-R3) and trastuzumab are monoclonal antibodies (mAbs) which would preferentially target tissues with EGFR and HER2 overexpression, respectively. In this chapter, we describe preparation and evaluation of the targeting properties of RIC formed by (177)Lu/(90)Y and monoclonal antibodies which selectively target EGFR- and HER2/c-neu-overexpressing tissues. mAbs were labeled with n.c.a. (177)Lu/(90)Y using bifunctional chelating agents. RIC binding properties and toxicity were evaluated in vitro using cell lines with varying antigen expression. In vivo tumor targeting properties of RIC were evaluated in mice bearing colorectal (SNU-C2B) and A431 tumor xenografts. RICs were prepared with specific activities up to 2 GBq/mg without significant loss in biological activity. (90)Y-h-R3/trastuzumab increased cell growth inhibition compared with unmodified mAbs or (90)YCl(3) alone in cell lines with overexpression of the target antigen. (177)Lu-h-R3 showed significantly higher uptake in A431 (22.8 ± 3.1% ID/g) than in SNU-C2B (8.8 ± 4.1% ID/g) xenografts at 72 h post injection, indicating strong association between tumor uptake and EGFR expression levels.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Inmunoconjugados/uso terapéutico , Lutecio/uso terapéutico , Radioisótopos/uso terapéutico , Receptor ErbB-2/antagonistas & inhibidores , Radioisótopos de Itrio/uso terapéutico , Animales , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacocinética , Marcaje Isotópico , Masculino , Ratones , Radioinmunoterapia , Ratas , Ratas Wistar , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...