Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 93(24): 8399-8407, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34097397

RESUMEN

Spatial metabolomics using mass spectrometry imaging (MSI) is a powerful tool to map hundreds to thousands of metabolites in biological systems. One major challenge in MSI is the annotation of m/z values, which is substantially complicated by background ions introduced throughout the chemicals and equipment used during experimental procedures. Among many factors, the formation of adducts with sodium or potassium ions, or in case of matrix-assisted laser desorption ionization (MALDI)-MSI, the presence of abundant matrix clusters strongly increases total m/z peak counts. Currently, there is a limitation to identify the chemistry of the many unknown peaks to interpret their biological function. We took advantage of the co-localization of adducts with their parent ions and the accuracy of high mass resolution to estimate adduct abundance in 20 datasets from different vendors of mass spectrometers. Metabolites ranging from lipids to amines and amino acids form matrix adducts with the commonly used 2,5-dihydroxybenzoic acid (DHB) matrix like [M + (DHB-H2O) + H]+ and [M + DHB + Na]+. Current data analyses neglect those matrix adducts and overestimate total metabolite numbers, thereby expanding the number of unidentified peaks. Our study demonstrates that MALDI-MSI data are strongly influenced by adduct formation across different sample types and vendor platforms and reveals a major influence of so far unrecognized metabolite-matrix adducts on total peak counts (up to one third). We developed a software package, mass2adduct, for the community for an automated putative assignment and quantification of metabolite-matrix adducts enabling users to ultimately focus on the biologically relevant portion of the MSI data.


Asunto(s)
Metaboloma , Metabolómica , Diagnóstico por Imagen , Lípidos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
Acta Neuropathol ; 133(3): 463-483, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28000031

RESUMEN

Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking-but not forced alcohol exposure-reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Etanol/uso terapéutico , Homeostasis/genética , Esfingolípidos/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Conducta de Elección/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Depresión/genética , Etanol/sangre , Preferencias Alimentarias/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esfingomielina Fosfodiesterasa/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
3.
Anal Bioanal Chem ; 407(18): 5323-31, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25935672

RESUMEN

Amyloidosis is a heterogeneous group of protein misfolding diseases characterized by deposition of amyloid proteins. The kidney is frequently affected, especially by immunoglobulin light chain (AL) and serum amyloid A (SAA) amyloidosis as the most common subgroups. Current diagnosis relies on histopathological examination, Congo red staining, or electron microscopy. Subtyping is done by immunohistochemistry; however, commercially available antibodies lack specificity. The purpose of this study was to identify and map amyloid proteins in formalin-fixed paraffin-embedded tissue sections using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in an integrated workflow. Renal amyloidosis and non-amyloidosis biopsies were processed for histological and MS analysis. Mass spectra corresponding to the congophilic areas were directly linked to the histological and MS images for correlation studies. Peptides for SAA and AL were detected by MALDI IMS associated to Congo red-positive areas. Sequence determination of amyloid peptides by LC-MS/MS analysis provided protein distribution and identification. Serum amyloid P component, apolipoprotein E, and vitronectin proteins were identified in both AA and AL amyloidosis, showing a strong correlation with Congo red-positive regions. Our findings highlight the utility of MALDI IMS as a new method to type amyloidosis in histopathological routine material and characterize amyloid-associated proteins that may provide insights into the pathogenetic process of amyloid formation.


Asunto(s)
Amiloide/análisis , Amiloidosis/patología , Riñón/patología , Placa Amiloide/patología , Amiloidosis/diagnóstico , Apolipoproteínas E/análisis , Humanos , Cadenas Ligeras de Inmunoglobulina/análisis , Placa Amiloide/diagnóstico , Proteína Amiloide A Sérica/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Vitronectina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...