Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 63(5): 617-625, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30136126

RESUMEN

All rubber tree clones (Hevea brasiliensis) exhibit regular annual wintering characterized by senescence and abscission of leaves. After 3-4 weeks, this is followed by the onset of new leaves. It is likely that the timing of leaf onset affects the susceptibility of rubber trees to rubber powdery mildew disease, as this predominantly infests young leaves. However, little information is available on the phenological behavior of different rubber clones, or how meteorological factors affect such behavior. We assessed the wintering and flowering patterns of five rubber clones in Xishuangbanna, southwest China, based on observations made from 1978 to 2011, and evaluated how these patterns responded to different meteorological factors. Partial least squares regression was used to analyze the timing of defoliation, refoliation, and flowering. Our results showed that the two clones RRIM 600 and GT1 defoliated during the last week of December and refoliated in the last week of January, and clones Yunyan 277-5, Yunyan 34-4, and PR 107 defoliated during the first week of January and refoliated in the second week of February. The number of hours of sunshine during both the rainy season and the cold dry period in the dry season were important determinants of phenological changes in the rubber trees. Similarly, higher temperatures tended to delay the onset of defoliation and refoliation, and were a triggering factor for the onset of flowering. These results may help rubber cultivators to schedule appropriate disease control measures, as well as to design hybridization programs aiming at the production of clones which are resistant to foliar disease.


Asunto(s)
Cambio Climático/historia , Flores/crecimiento & desarrollo , Hevea/crecimiento & desarrollo , Estaciones del Año , Ascomicetos , China , Historia del Siglo XX , Historia del Siglo XXI , Enfermedades de las Plantas/prevención & control , Luz Solar
2.
Ecol Evol ; 9(24): 13764-13775, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31938480

RESUMEN

AIM: We construct a framework for mapping pattern and drivers of insect diversity at the continental scale and use it to test whether and which environmental gradients drive insect beta diversity. LOCATION: Global; North and Central America; Western Europe. TIME PERIOD: 21st century. MAJOR TAXA STUDIED: Insects. METHODS: An informatics system was developed to integrate terrestrial data on insects with environmental parameters. We mined repositories of data for distribution, climatic data were retrieved (WorldClim), and vegetation parameters inferred from remote sensing analysis (MODIS Vegetation Continuous Fields). Beta diversity between sites was calculated and then modeled with two methods, Mantel test with multiple regression and generalized dissimilarity modeling. RESULTS: Geographic distance was the main driver of insect beta diversity. Independent of geographic distance, bioclimate variables explained more variance in dissimilarity than vegetation variables, although the particular variables found to be significant were more consistent in the latter, particularly, tree cover. Tree cover gradients drove compositional dissimilarity at denser coverages, in both continental case studies. For climate, gradients in temperature parameters were significant in driving beta diversity more so than gradients in precipitation parameters. MAIN CONCLUSIONS: Although environmental gradients drive insect beta diversity independently of geography, the relative contribution of different climatic and vegetational parameters is not expected to be consistent in different study systems. With further incorporation of additional temporal information and variables, this approach will enable the development of a predictive framework for conserving insect biodiversity at the global scale.

3.
Proc Biol Sci ; 284(1854)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28469024

RESUMEN

China is investing immense resources for planting trees, totalling more than US$ 100 billion in the past decade alone. Every year, China reports more afforestation than the rest of the world combined. Here, we show that China's forest cover gains are highly definition-dependent. If the definition of 'forest' follows FAO criteria (including immature and temporarily unstocked areas), China has gained 434 000 km2 between 2000 and 2010. However, remotely detectable gains of vegetation that non-specialists would view as forest (tree cover higher than 5 m and minimum 50% crown cover) are an order of magnitude less (33 000 km2). Using high-resolution maps and environmental modelling, we estimate that approximately 50% of the world's forest with minimum 50% crown cover has been lost in the past approximately 10 000 years. China historically lost 1.9-2.7 million km2 (59-67%), and substantial losses continue. At the same time, most of China's afforestation investment targets environments that our model classes as unsuitable for trees. Here, gains detectable via satellite imagery are limited. Conversely, the regions where modest gains are detected are environmentally suitable but have received little afforestation investment due to conflicting land-use demands for agriculture and urbanization. This highlights the need for refined forest monitoring, and greater consideration of environmental suitability in afforestation programmes.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Imágenes Satelitales , Árboles/crecimiento & desarrollo , Agricultura , China , Urbanización
4.
Artículo en Inglés | MEDLINE | ID: mdl-27114577

RESUMEN

Tropical lowland rainforests are increasingly threatened by the expansion of agriculture and the extraction of natural resources. In Jambi Province, Indonesia, the interdisciplinary EFForTS project focuses on the ecological and socio-economic dimensions of rainforest conversion to jungle rubber agroforests and monoculture plantations of rubber and oil palm. Our data confirm that rainforest transformation and land use intensification lead to substantial losses in biodiversity and related ecosystem functions, such as decreased above- and below-ground carbon stocks. Owing to rapid step-wise transformation from forests to agroforests to monoculture plantations and renewal of each plantation type every few decades, the converted land use systems are continuously dynamic, thus hampering the adaptation of animal and plant communities. On the other hand, agricultural rainforest transformation systems provide increased income and access to education, especially for migrant smallholders. Jungle rubber and rubber monocultures are associated with higher financial land productivity but lower financial labour productivity compared to oil palm, which influences crop choice: smallholders that are labour-scarce would prefer oil palm while land-scarce smallholders would prefer rubber. Collecting long-term data in an interdisciplinary context enables us to provide decision-makers and stakeholders with scientific insights to facilitate the reconciliation between economic interests and ecological sustainability in tropical agricultural landscapes.


Asunto(s)
Agricultura , Biodiversidad , Carbono/análisis , Conservación de los Recursos Naturales , Bosque Lluvioso , Arecaceae/crecimiento & desarrollo , Hevea/crecimiento & desarrollo , Indonesia
5.
PLoS One ; 11(2): e0150062, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26907479

RESUMEN

The rapidly growing car industry in China has led to an equally rapid expansion of monoculture rubber in many regions of South East Asia. Xishuangbanna, the second largest rubber planting area in China, located in the Indo-Burma biodiversity hotspot, supplies about 37% of the domestic natural rubber production. There, high income possibilities from rubber drive a dramatic expansion of monoculture plantations which poses a threat to natural forests. For the first time we mapped rubber plantations in and outside protected areas and their net present value for the years 1988, 2002 (Landsat, 30 m resolution) and 2010 (RapidEye, 5 m resolution). The purpose of our study was to better understand the pattern and dynamics of the expansion of rubber plantations in Xishuangbanna, as well as its economic prospects and conservation impacts. We found that 1) the area of rubber plantations was 4.5% of the total area of Xishuangbanna in 1988, 9.9% in 2002, and 22.2% in 2010; 2) rubber monoculture expanded to higher elevations and onto steeper slopes between 1988 and 2010; 3) the proportion of rubber plantations with medium economic potential dropped from 57% between 1988 and 2002 to 47% in 2010, while the proportion of plantations with lower economic potential had increased from 30% to 40%; and 4) nearly 10% of the total area of nature reserves within Xishuangbanna has been converted to rubber monoculture by 2010. On the basis of our findings, we conclude that the rapid expansion of rubber plantations into higher elevations, steeper terrain, and into nature reserves (where most of the remaining forests of Xishuangbanna are located) poses a serious threat to biodiversity and environmental services while not producing the expected economic returns. Therefore, it is essential that local governments develop long-term land use strategies for balancing economic benefits with environmental sustainability, as well as for assisting farmers with the selection of land suitable for rubber production.


Asunto(s)
Agricultura/estadística & datos numéricos , Hevea/crecimiento & desarrollo , Agricultura/economía , Biodiversidad , China , Conservación de los Recursos Naturales , Geografía , Análisis Espacial
6.
PLoS One ; 10(8): e0134935, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26266803

RESUMEN

Quercus robur L. (pedunculate oak) and Quercus petraea (Matt.) Liebl. (sessile oak) are two European oak species of great economic and ecological importance. Even though both oaks have wide ecological amplitudes of suitable growing conditions, forests dominated by oaks often fail to regenerate naturally. The regeneration performance of both oak species is assumed to be subject to a variety of variables that interact with one another in complex ways. The novel approach of this research was to study the effect of many ecological variables on the regeneration performance of both oak species together and identify key variables and interactions for different development stages of the oak regeneration on a large scale in the field. For this purpose, overstory and regeneration inventories were conducted in oak dominated forests throughout southern Germany and paired with data on browsing, soil, and light availability. The study was able to verify the assumption that the occurrence of oak regeneration depends on a set of variables and their interactions. Specifically, combinations of site and stand specific variables such as light availability, soil pH and iron content on the one hand, and basal area and species composition of the overstory on the other hand. Also browsing pressure was related to oak abundance. The results also show that the importance of variables and their combinations differs among the development stages of the regeneration. Light availability becomes more important during later development stages, whereas the number of oaks in the overstory is important during early development stages. We conclude that successful natural oak regeneration is more likely to be achieved on sites with lower fertility and requires constantly controlling overstory density. Initially sufficient mature oaks in the overstory should be ensured. In later stages, overstory density should be reduced continuously to meet the increasing light demand of oak seedlings and saplings.


Asunto(s)
Conservación de los Recursos Naturales , Dispersión de las Plantas/fisiología , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Suelo/química , Biomasa , Clima , Ecosistema , Alemania , Concentración de Iones de Hidrógeno , Luz , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Quercus/metabolismo , Plantones/metabolismo
7.
PLoS One ; 9(11): e111924, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25420014

RESUMEN

Hemispherical photography is a well-established method to optically assess ecological parameters related to plant canopies; e.g. ground-level light regimes and the distribution of foliage within the crown space. Interpreting hemispherical photographs involves classifying pixels as either sky or vegetation. A wide range of automatic thresholding or binarization algorithms exists to classify the photographs. The variety in methodology hampers ability to compare results across studies. To identify an optimal threshold selection method, this study assessed the accuracy of seven binarization methods implemented in software currently available for the processing of hemispherical photographs. Therefore, binarizations obtained by the algorithms were compared to reference data generated through a manual binarization of a stratified random selection of pixels. This approach was adopted from the accuracy assessment of map classifications known from remote sensing studies. Percentage correct (Pc) and kappa-statistics (K) were calculated. The accuracy of the algorithms was assessed for photographs taken with automatic exposure settings (auto-exposure) and photographs taken with settings which avoid overexposure (histogram-exposure). In addition, gap fraction values derived from hemispherical photographs were compared with estimates derived from the manually classified reference pixels. All tested algorithms were shown to be sensitive to overexposure. Three of the algorithms showed an accuracy which was high enough to be recommended for the processing of histogram-exposed hemispherical photographs: "Minimum" (Pc 98.8%; K 0.952), "Edge Detection" (Pc 98.1%; K 0.950), and "Minimum Histogram" (Pc 98.1%; K 0.947). The Minimum algorithm overestimated gap fraction least of all (11%). The overestimation by the algorithms Edge Detection (63%) and Minimum Histogram (67%) were considerably larger. For the remaining four evaluated algorithms (IsoData, Maximum Entropy, MinError, and Otsu) an incompatibility with photographs containing overexposed pixels was detected. When applied to histogram-exposed photographs, these algorithms overestimated the gap fraction by at least 180%.


Asunto(s)
Algoritmos , Ecología/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fotograbar/métodos , Ecología/instrumentación , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/normas , Fotograbar/instrumentación , Fotograbar/normas , Estándares de Referencia , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...