Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826359

RESUMEN

COVID-19 disproportionately affected minorities, while research barriers to engage underserved communities persist. Serological studies reveal infection and vaccination histories within these communities, however lack of consensus on downstream evaluation methods impede meta-analyses and dampen the broader public health impact. To reveal the impact of COVID-19 and vaccine uptake among diverse communities and to develop rigorous serological downstream evaluation methods, we engaged racial and ethnic minorities in Massachusetts in a cross-sectional study (April - July 2022), screened blood and saliva for SARS-CoV-2 and human endemic coronavirus (hCoV) antibodies by bead-based multiplex assay and point-of-care (POC) test and developed across-plate normalization and classification boundary methods for optimal qualitative serological assessments. Among 290 participants, 91.4 % reported receiving at least one dose of a COVID-19 vaccine, while 41.7 % reported past SARS-CoV-2 infections, which was confirmed by POC- and multiplex-based saliva and blood IgG seroprevalences. We found significant differences in antigen-specific IgA and IgG antibody outcomes and indication of cross-reactivity with hCoV OC43. Finally, 26.5 % of participants reported lingering COVID-19 symptoms, mostly middle-aged Latinas. Hence, prolonged COVID-19 symptoms were common among our underserved population and require public health attention, despite high COVID-19 vaccine uptake. Saliva served as a less-invasive sample-type for IgG-based serosurveys and hCoV cross-reactivity needed to be evaluated for reliable SARS-CoV-2 serosurvey results. Using the developed rigorous downstream qualitative serological assessment methods will help standardize serosurvey outcomes and meta-analyses for future serosurveys beyond SARS-CoV-2.

2.
J Theor Biol ; 559: 111375, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36513210

RESUMEN

Serology testing can identify past infection by quantifying the immune response of an infected individual providing important public health guidance. Individual immune responses are time-dependent, which is reflected in antibody measurements. Moreover, the probability of obtaining a particular measurement from a random sample changes due to changing prevalence (i.e., seroprevalence, or fraction of individuals exhibiting an immune response) of the disease in the population. Taking into account these personal and population-level effects, we develop a mathematical model that suggests a natural adaptive scheme for estimating prevalence as a function of time. We then combine the estimated prevalence with optimal decision theory to develop a time-dependent probabilistic classification scheme that minimizes the error associated with classifying a value as positive (history of infection) or negative (no such history) on a given day since the start of the pandemic. We validate this analysis by using a combination of real-world and synthetic SARS-CoV-2 data and discuss the type of longitudinal studies needed to execute this scheme in real-world settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Prevalencia , Estudios Seroepidemiológicos , Prueba de COVID-19 , Anticuerpos Antivirales
3.
Math Biosci ; 351: 108858, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714754

RESUMEN

In diagnostic testing, establishing an indeterminate class is an effective way to identify samples that cannot be accurately classified. However, such approaches also make testing less efficient and must be balanced against overall assay performance. We address this problem by reformulating data classification in terms of a constrained optimization problem that (i) minimizes the probability of labeling samples as indeterminate while (ii) ensuring that the remaining ones are classified with an average target accuracy X. We show that the solution to this problem is expressed in terms of a bathtub-type principle that holds out those samples with the lowest local accuracy up to an X-dependent threshold. To illustrate the usefulness of this analysis, we apply it to a multiplex, saliva-based SARS-CoV-2 antibody assay and demonstrate up to a 30 % reduction in the number of indeterminate samples relative to more traditional approaches.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Teoría de las Decisiones , Humanos , Saliva
4.
ArXiv ; 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35132382

RESUMEN

In diagnostic testing, establishing an indeterminate class is an effective way to identify samples that cannot be accurately classified. However, such approaches also make testing less efficient and must be balanced against overall assay performance. We address this problem by reformulating data classification in terms of a constrained optimization problem that (i) minimizes the probability of labeling samples as indeterminate while (ii) ensuring that the remaining ones are classified with an average target accuracy X. We show that the solution to this problem is expressed in terms of a bathtub principle that holds out those samples with the lowest local accuracy up to an X-dependent threshold. To illustrate the usefulness of this analysis, we apply it to a multiplex, saliva-based SARS-CoV-2 antibody assay and demonstrate up to a 30 % reduction in the number of indeterminate samples relative to more traditional approaches.

5.
J Math Biol ; 83(5): 55, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727234

RESUMEN

In this paper we consider mathematical modeling of the dynamics of self-organized patterning of spatially confined human embryonic stem cells (hESCs) treated with BMP4 (gastruloids) described in recent experimental works (Warmflash in Nat Methods 11:847-854, 2014; Chhabra in PloS Biol 17: 3000498, 2019). In the first part of the paper we use the activator-inhibitor equations of Gierer and Meinhardt to identify 3 reaction-diffusion regimes for each of the three morphogenic proteins, BMP4, Wnt and Nodal, based on the characteristic features of the dynamic patterning. We identify appropriate boundary conditions which correspond to the experimental setup and perform numerical simulations of the reaction-diffusion (RD) systems, using the finite element approximation, to confirm that the RD systems in these regimes produce realistic dynamics of the protein concentrations. In the second part of the paper we use analytic tools to address the questions of the existence and stability of non-homogeneous steady states for the reaction-diffusion systems of the type considered in the first part of the paper.


Asunto(s)
Células Madre Embrionarias Humanas , Difusión , Humanos , Modelos Biológicos , Morfogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...