Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 9: 192-202, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29766027

RESUMEN

Viral gene delivery is showing great promise for treating retinal disease. Although subretinal vector delivery has mainly been used to date, intravitreal delivery has potential advantages if low retinal transduction efficiency can be overcome. To this end, we investigated the effects of co-injection of glycosaminoglycan-degrading enzymes, singly or in combination, with AAV2 as a method of increasing retinal transduction. Experiments using healthy mice demonstrated that these enzymes enhance retinal transduction. We found that heparinase III produced the greatest individual effect, and this was enhanced further by combination with hyaluronan lyase. In addition, this optimized AAV2-enzyme combination led to a marked improvement in transduction in retinas with advanced retinal degeneration compared with AAV2 alone. Safety studies measuring retinal function by flash electroretinography indicated that retinal function was unaffected in the acute period and at least 12 months after enzyme treatment, whereas pupillometry confirmed that retinal ganglion cell activity was unaffected. Retinal morphology was not altered by the enzyme injection. Collectively these data confirm the efficacy and safety of this intravitreal approach in enhancing retinal transduction efficiency by AAV in rodents. Translating this method into other species, such as non-human primates, or for clinical applications will have challenges and require further studies.

2.
Nat Commun ; 8(1): 1813, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180667

RESUMEN

Rod and cone photoreceptors support vision across large light intensity ranges. Rods, active under dim illumination, are thought to saturate at higher (photopic) irradiances. The extent of rod saturation is not well defined; some studies report rod activity well into the photopic range. Using electrophysiological recordings from retina and dorsal lateral geniculate nucleus of cone-deficient and visually intact mice, we describe stimulus and physiological factors that influence photopic rod-driven responses. We find that rod contrast sensitivity is initially strongly reduced at high irradiances, but progressively recovers to allow responses to moderate contrast stimuli. Surprisingly, rods recover faster at higher light levels. A model of rod phototransduction suggests that phototransduction gain adjustments and bleaching adaptation underlie rod recovery. Consistently, exogenous chromophore reduces rod responses at bright background. Thus, bleaching adaptation renders mouse rods responsive to modest contrast at any irradiance. Paradoxically, raising irradiance across the photopic range increases the robustness of rod responses.


Asunto(s)
Adaptación Fisiológica , Fototransducción/fisiología , Luz/efectos adversos , Fotoblanqueo/efectos de la radiación , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Visión de Colores/fisiología , Cuerpos Geniculados/fisiología , Ratones , Ratones Transgénicos , Modelos Animales , Estimulación Luminosa , Células Fotorreceptoras Retinianas Conos/fisiología
3.
Mol Vis ; 23: 334-345, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659709

RESUMEN

PURPOSE: Retinal dystrophy through outer photoreceptor cell death affects 1 in 2,500 people worldwide with severe impairment of vision in advanced stages of the disease. Optogenetic strategies to restore visual function to animal models of retinal degeneration by introducing photopigments to neurons spared degeneration in the inner retina have been explored, with variable degrees of success. It has recently been shown that the non-steroidal anti-inflammatory and non-selective gap-junction blocker meclofenamic acid (MFA) can enhance the visual responses produced by an optogenetic actuator (channelrhodopsin) expressed in retinal ganglion cells (RGCs) in the degenerate retina. Here, we set out to determine whether MFA could also enhance photoreception by another optogenetic strategy in which ectopic human rod opsin is expressed in ON bipolar cells. METHODS: We used in vitro multielectrode array (MEA) recordings to characterize the light responses of RGCs in the rd1 mouse model of advanced retinal degeneration following intravitreal injection of an adenoassociated virus (AAV2) driving the expression of human rod opsin under a minimal grm6 promoter active in ON bipolar cells. RESULTS: We found treated retinas were light responsive over five decades of irradiance (from 1011 to 1015 photons/cm2/s) with individual RGCs covering up to four decades. Application of MFA reduced the spontaneous firing rate of the visually responsive neurons under light- and dark-adapted conditions. The change in the firing rate produced by the 2 s light pulses was increased across all intensities following MFA treatment, and there was a concomitant increase in the signal to noise ratio for the visual response. Restored light responses were abolished by agents inhibiting glutamatergic or gamma-aminobutyric acid (GABA)ergic signaling in the MFA-treated preparation. CONCLUSIONS: These results confirm the potential of MFA to inhibit spontaneous activity and enhance the signal to noise ratio of visual responses in optogenetic therapies to restore sight.


Asunto(s)
Ácido Meclofenámico/farmacología , Opsinas de Bastones/metabolismo , Relación Señal-Ruido , Vías Visuales/efectos de los fármacos , Vías Visuales/fisiología , Potenciales de Acción/efectos de los fármacos , Adaptación Ocular/efectos de los fármacos , Animales , Humanos , Ratones , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo
4.
Curr Biol ; 27(11): 1623-1632.e4, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28528909

RESUMEN

Melanopsin photoreception enhances retinal responses to variations in ambient light (irradiance) and drives non-image-forming visual reflexes such as circadian entrainment [1-6]. Melanopsin signals also reach brain regions responsible for form vision [7-9], but melanopsin's contribution, if any, to encoding visual images remains unclear. We addressed this deficit using principles of receptor silent substitution to present images in which visibility for melanopsin versus rods+cones was independently modulated, and we recorded evoked responses in the mouse dorsal lateral geniculate nucleus (dLGN; thalamic relay for cortical vision). Approximately 20% of dLGN units responded to patterns visible only to melanopsin, revealing that melanopsin signals alone can convey spatial information. Spatial receptive fields (RFs) mapped using melanopsin-isolating stimuli had ON centers with diameters ∼13°. Melanopsin and rod+cone responses differed in the temporal domain, and responses to slow changes in radiance (<0.9 Hz) and stationary images were deficient when stimuli were rendered invisible for melanopsin. We employed these data to devise and test a mathematical model of melanopsin's involvement in form vision and applied it, along with further experimental recordings, to explore melanopsin signals under simulated active view of natural scenes. Our findings reveal that melanopsin enhances the thalamic representation of scenes containing local correlations in radiance, compensating for the high temporal frequency bias of cone vision and the negative correlation between magnitude and frequency for changes in direction of view. Together, these data reveal a distinct melanopsin contribution to encoding visual images, predicting that, under natural view, melanopsin augments the early visual system's ability to encode patterns over moderate spatial scales.


Asunto(s)
Modelos Biológicos , Opsinas de Bastones/fisiología , Visión Ocular/fisiología , Corteza Visual/fisiología , Animales , Mapeo Encefálico , Cuerpos Geniculados/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Estimulación Luminosa , Retina/citología , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Programas Informáticos
5.
Neuron ; 93(2): 299-307, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28103478

RESUMEN

Background light intensity (irradiance) substantially impacts the visual code in the early visual system at synaptic and single-neuron levels, but its influence on population activity is largely unexplored. We show that fast narrowband oscillations, an important feature of population activity, systematically increase in amplitude as a function of irradiance in both anesthetized and awake, freely moving mice and at the level of the retina and dorsal lateral geniculate nucleus (dLGN). Narrowband coherence increases with irradiance across large areas of the dLGN, but especially for neighboring units. The spectral sensitivity of these effects and their substantial reduction in melanopsin knockout animals indicate a contribution from inner retinal photoreceptors. At bright backgrounds, narrowband coherence allows pooling of single-unit responses to become a viable strategy for enhancing visual signals within its frequency range.


Asunto(s)
Cuerpos Geniculados/fisiología , Luz , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Visión Ocular/fisiología , Animales , Electrorretinografía , Ritmo Gamma , Ratones , Ratones Noqueados , Estimulación Luminosa , Opsinas de Bastones/genética , Vías Visuales , Vigilia
6.
Proc Natl Acad Sci U S A ; 112(42): E5734-43, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438865

RESUMEN

Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.


Asunto(s)
Cuerpos Geniculados/fisiología , Opsinas de Bastones/fisiología , Visión Ocular , Animales , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA