Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(15): 3284-3288, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38547490

RESUMEN

This work reports the first solvent-free catalytic approach for the cleavage of the fluorenylmethoxycarbonyl (Fmoc) protecting group from amine and alcohol functionalities. Various saccharide, peptide, and glyco-amino acid substrates were efficiently deprotected by simple treatment with 20 mol % neat 4-dimethylaminopyridine (DMAP) (one of the effective base catalysts found), without any solvent or stoichiometric additives. Small model structures were finally assembled through one-pot, base-catalyzed, solvent-free multistep sequences combining the Fmoc cleavage with esterification, amidation, and/or glycosylation steps.

2.
Int J Biol Macromol ; 260(Pt 1): 129483, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242385

RESUMEN

Diabolican is an exopolysaccharide (EPS) produced by Vibrio diabolicus HE800, a mesophilic bacterium firstly isolated from a deep-sea hydrothermal field. Its glycosaminoglycan (GAG)-like structure, consisting of a tetrasaccharide repeating unit composed of two aminosugars (N-acetyl-glucosamine and N-acetyl-galactosamine) and two glucuronic acid units, suggested to subject it to regioselective sulfation processes, in order to obtain some sulfated derivatives potentially acting as GAG mimics. To this aim, a multi-step semi-synthetic approach, relying upon tailored sequence of regioselective protection, sulfation and deprotection steps, was employed in this work. The chemical structure of the obtained sulfated diabolican derivatives was characterized by a multi-technique analytic approach, in order to define both degree of sulfation (DS) and sulfation pattern within the polysaccharide repeating unit, above all. Finally, binding affinity for some growth factors relevant for biomedical applications was measured for both starting diabolican and sulfated derivatives thereof. Collected data suggested that sulfation pattern could be a key structural element for the selective interaction with signaling proteins not only in the case of native GAGs, as already known, but also for GAG-like structures obtained by regioselective sulfation of naturally unsulfated polysaccharides.


Asunto(s)
Polisacáridos , Sulfatos , Sulfatos/química , Polisacáridos/química , Glicosaminoglicanos , Oligosacáridos , Péptidos y Proteínas de Señalización Intercelular
3.
Carbohydr Polym ; 326: 121638, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142103

RESUMEN

Glycosaminoglycans (GAGs) are essential constituents of the cell surface and extracellular matrix, where they are involved in several cellular processes through their interactions with various proteins. For successful tissue regeneration, developing an appropriate matrix supporting biological activities of cells in a similar manner than GAGs remains still challenging. In this context, this study aims to design a thermosensitive polysaccharide that could further be used as hydrogel for tissue engineering applications. For this purpose, infernan, a marine bacterial exopolysaccharide (EPS) endowed with GAG-mimetic properties was grafted with a thermosensitive polymer, poly(N-isopropylacrylamide) (pNIPAM). Eight grafted polysaccharides were obtained by varying EPS/pNIPAM molar ratio and the molecular weight of pNIPAM. Their physicochemical characteristics and their thermosensitive properties were determined using a multi-technique, experimental approach. In parallel, molecular dynamics and Monte Carlo simulations were applied at two different scales to elucidate, respectively, the molecular conformation of grafted infernan chain and their ability to form an infinite network undergoing a sol-gel transition near the percolation, a necessary condition in hydrogel formation. It comes out from this study that thermosensitive infernan was successfully developed and its potential use in tissue regeneration as a hydrogel scaffold will further be assessed.


Asunto(s)
Glicosaminoglicanos , Hidrogeles , Temperatura , Hidrogeles/química , Polisacáridos
4.
Biotechnol Adv ; 67: 108185, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37290584

RESUMEN

Chondroitin sulfate (CS) is a well-known glycosaminoglycan present in a large variety of animal tissues, with an outstanding structural heterogeneity mainly related to molecular weight and sulfation pattern. Recently, few microorganisms, eventually engineered, proved able to synthesize the CS biopolymer backbone, composed of d-glucuronic acid and N-acetyl-d-galactosamine linked through alternating ß-(1-3)- and ß-(1-4)-glycosidic bonds, and secrete the biopolymers generally unsulfated and possibly decorated with other carbohydrates/molecules. Enzyme catalyzed/assisted methods and chemical tailored protocols allowed to obtain a variety of macromolecules not only resembling the natural extractive ones, but even enlarging the access to unnatural structural features. These macromolecules have been investigated for their bioactivity in vitro and in vivo establishing their potentialities in an array of novel applications in the biomedical field. This review aims to present an overview of the advancements in: i) the metabolic engineering strategies and the biotechnological processes towards chondroitin manufacturing; ii) the chemical approaches applied to obtain specific structural features and targeted decoration of the chondroitin backbone; iii) the biochemical and biological properties of the diverse biotechnological-sourced chondroitin polysaccharides reported so far, unraveling novel fields of applications.


Asunto(s)
Sulfatos de Condroitina , Glicosaminoglicanos , Animales , Polisacáridos/química , Biotecnología , Biopolímeros
5.
Carbohydr Res ; 528: 108824, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141732

RESUMEN

1,2-trans methyl glycosides can be readily obtained from peracetylated sugars through their initial conversion into glycosyl iodide donors and subsequent exposure of these latter to a slight excess of sodium methoxide in methanol. Under these conditions a varied set of mono- and disaccharide precursors afforded the corresponding 1,2-trans glycosides with concomitant de-O-acetylation in satisfying yields (in the range 59-81%). A similar approach also proved effective when using GlcNAc glycosyl chloride as the donor.


Asunto(s)
Disacáridos , Glicósidos , Conformación de Carbohidratos , Acetilación
6.
JACS Au ; 3(3): 628-656, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37006755

RESUMEN

Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.

7.
Biomacromolecules ; 24(6): 2522-2531, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37116076

RESUMEN

Sulfated alginates (ASs), as well as several artificially sulfated polysaccharides, show interesting bioactivities. The key factors for structure-activity relationships studies are the degree of sulfation and the distribution of the sulfate groups along the polysaccharide backbone (sulfation pattern). The former parameter can often be controlled through stoichiometry, while the latter requires the development of suitable chemical or enzymatic, regioselective methods and is still missing for ASs. In this work, a study on the regioselective installation of several different protecting groups on a d-mannuronic acid enriched (M-rich) alginate is reported in order to develop a semi-synthetic access to regioselectively sulfated AS derivatives. A detailed structural characterization of the obtained ASs revealed that the regioselective sulfation could be achieved complementarily at the O-2 or O-3 positions of M units through multi-step sequences relying upon a silylating or benzoylating reagent for the regioselective protection of M-rich alginic acid, followed by sulfation and deprotection.


Asunto(s)
Alginatos , Sulfatos , Alginatos/química , Polisacáridos/química , Sulfatos/química
8.
Int J Biol Macromol ; 236: 123873, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870627

RESUMEN

Hyaluronan-(HA) short half-life in vivo limits its benefits in tissue repair. Self-esterified-HA is of great interest because it progressively releases HA, promoting tissue-regeneration longer than the unmodified-polymer. Here, the 1-ethyl-3-(3-diethylaminopropyl)carbodiimide(EDC)-hydroxybenzotriazole(HOBt) carboxyl-activating-system was evaluated for self-esterifying HA in the solid state. The aim was to propose an alternative to the time-consuming, conventional reaction of quaternary-ammonium-salts of HA with hydrophobic activating-systems in organic media, and to the EDC-mediated reaction, limited by by-product formation. Additionally, we aimed to obtain derivatives releasing defined molecular-weight(MW)-HA that would be valuable for tissue renewal. A 250 kDa-HA(powder/sponge) was reacted with increasing EDC/HOBt amounts. HA-modification was investigated through Size-Exclusion-Chromatography-Triple-Detector-Array-analyses, FT-IR/1H NMR and the products(XHAs) extensively characterized. Compared to conventional protocols, the set procedure is more efficient, avoids side-reactions, allows for an easier processing to diverse clinically-usable 3D-forms, leads to products gradually releasing HA under physiological conditions with the possibility to tune the MW of the biopolymer-released. Finally, the XHAs exhibit sound stability to Bovine-Testicular-Hyaluronidase, hydration/mechanical properties suitable for wound-dressings, with improvements over available matrices, and prompt in vitro wound-regeneration, comparably to linear-HA. To the best of our knowledge, the procedure is the first valid alternative to conventional protocols for HA self-esterification with advances in the process itself and in product performance.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Animales , Bovinos , Ácido Hialurónico/química , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Cicatrización de Heridas , Biopolímeros
9.
Biomacromolecules ; 24(1): 462-470, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563405

RESUMEN

Sulfated glycosaminoglycans (GAGs) are fundamental constituents of both the cell surface and extracellular matrix. By playing a key role in cell-cell and cell-matrix interactions, GAGs are involved in many physiological and pathological processes. To design GAG mimetics with similar therapeutic potential as the natural ones, the specific structural features, among them sulfate content, sulfation pattern, and chain length, should be considered. In the present study, we describe a sulfation method based on microwave radiation to obtain highly sulfated derivatives as GAG mimetics. The starting low-molecular-weight (LMW) derivative was prepared from the infernan exopolysaccharide, a highly branched naturally slightly sulfated heteropolysaccharide synthesized by the deep-sea hydrothermal vent bacterium Alteromonas infernus. LMW highly sulfated infernan derivatives obtained by conventional heating sulfation have already been shown to display GAG-mimetic properties. Here, the potential of microwave-assisted sulfation versus that of the conventional method to obtain GAG mimetics was explored. Structural analysis by NMR revealed that highly sulfated derivatives from the two methods shared similar structural features, emphasizing that microwave-assisted sulfation with a 12-fold shorter reaction time is as efficient as the classical one.


Asunto(s)
Glicosaminoglicanos , Microondas , Glicosaminoglicanos/química , Sulfatos/química , Espectroscopía de Resonancia Magnética , Matriz Extracelular/metabolismo
10.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745978

RESUMEN

BDDE (1,4-butanediol-diglycidylether)-crosslinked hyaluronan (HA) hydrogels are widely used for dermo-aesthetic purposes. The rheology and stability of the gels under physiological conditions greatly affect their clinical indications and outcomes. To date, no studies investigating how these features are related to the chemistry of the polymeric network have been reported. Here, four available HA-BDDE hydrogels were studied to determine how and to what extent their rheology and stability with respect to enzymatic hydrolysis relate to the type and degree of HA structural modification. 1H-/13C-NMR analyses were associated for the quantification of the "true" HA chemical derivatization level, discriminating between HA that was effectively crosslinked by BDDE, and branched HA with BDDE that was anchored on one side. The rheology was measured conventionally and during hydration in a physiological medium. Sensitivity to bovine testicular hyaluronidase was quantified. The correlation between NMR data and gel rheology/stability was evaluated. The study indicated that (1) the gels greatly differed in the amounts of branched, crosslinked, and overall modified HA, with most of the HA being branched; (2) unexpectedly, the conventionally measured rheological properties did not correlate with the chemical data; (3) the gels' ranking in terms of rheology was greatly affected by hydration; (4) the rheology of the hydrated gels was quantitatively correlated with the amount of crosslinked HA, whereas the correlations with the total HA modification level and with the degree of branched HA were less significant; (5) increasing HA derivatization/crosslinking over 9/3 mol% did not enhance the stability with respect to hyaluronidases. These results broaden our knowledge of these gels and provide valuable information for improving their design and characterization.

11.
Carbohydr Polym ; 288: 119379, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35450641

RESUMEN

Lactose-modified chitosan (CTL) is sulfated using SO3·py or SO3·DMF as sulfating agents. The two products are characterized by elemental analysis, FT-IR, 1H,13C-DEPT-HSQC and 1H,13C-HSQC-TOCSY experiments which allow the extent and selectivity of chemical sulfation to be determined. Dynamic Light Scattering shows a pH-dependent association of the sulfated polysaccharides which are described as flexible by the Smidsrød's B parameter and the intrinsic viscosity at infinite ionic strength. Shear viscosity and intrinsic viscosity show that sulfation protocols lead to chain scission which is more pronounced when SO3·DMF is used. The sulfated samples are able to induce aggregation of human bone marrow mesenchymal stem cells, resulting in the formation of smaller nodules compared to the unmodified CTL sample. Over time, the sample with the higher degree of sulfation allows further aggregation between cell clusters while the sample with the lower degree of sulfation shows dissolution of the aggregates.


Asunto(s)
Quitosano , Quitosano/química , Quitosano/farmacología , Condrocitos , Glicosaminoglicanos , Humanos , Lactosa/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Sulfatos/química , Óxidos de Azufre
12.
J R Soc Interface ; 19(187): 20210800, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35193388

RESUMEN

In cancer therapy, stimulus-responsive drug delivery systems are of particular interest for reducing side effects in healthy tissues and improving drug selectivity in the tumoral ones. Here, a strategy for the preparation of a photo-responsive cross-linked trilayer deposited onto an oil-in-water nanoemulsion via a layer-by-layer technique is reported. The system is made of completely biocompatible materials such as soybean oil, egg lecithin and glycol chitosan, with heparin as the polymeric shell. The oil core is pre-loaded with curcumin as a model lipophilic active molecule with anti-tumoral properties. The trilayer cross-linkage is performed via a photoinitiator-free thiol-ene 'click' reaction. In particular, the system is implemented with an o-nitrobenzyl group functionalized with a thiol moiety which can perform both the thiol-ene 'click' reaction and the cleavage meant for controlled drug release at two different wavelengths, respectively. So the preparation and characterization of a photo-responsive natural nanocarrier (PNC) that is stable under physiological conditions owing to the thiol-ene cross-linkage are reported. PNC performance has been assessed in vitro on melanoma cells as well as in vivo on xenograft tumour-induced mice.


Asunto(s)
Curcumina , Nanocápsulas , Neoplasias , Animales , Materiales Biocompatibles , Humanos , Ratones , Polímeros
13.
Carbohydr Polym ; 283: 119054, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35153009

RESUMEN

Sulfated glycosaminoglycan (GAG) analogues derived from plant, algae or microbial sourced polysaccharides are highly interesting in order to gain bioactivities similar to sulfated GAGs but without risks and concerns derived from their typical animal sources. Since the exopolysaccharide (EPS) produced by the bacterium Vibrio diabolicus HE800 strain from deep-sea hydrothermal vents is known to have a GAG-like structure with a linear backbone composed of unsulfated aminosugar and uronic acid monomers, its structural modification through four different semi-synthetic sulfation strategies has been performed. A detailed structural characterization of the six obtained polysaccharides revealed that three different sulfation patterns (per-O-sulfation, a single N-sulfation and a selective primary hydroxyls sulfation) were achieved, with molecular weights ranging from 5 to 40 kDa. A Surface Plasmonic Resonance (SPR) investigation of the affinity between such polysaccharides and a set of growth factors revealed that binding strength is primarily depending on polysaccharide sulfation degree.


Asunto(s)
Glicosaminoglicanos/química , Polisacáridos Bacterianos/química , Vibrio , Amino Azúcares/química , Animales , Péptidos y Proteínas de Señalización Intercelular/química , Espectroscopía de Resonancia Magnética/métodos , Peso Molecular , Sulfatos/química , Resonancia por Plasmón de Superficie/métodos , Ácidos Urónicos/química
15.
Antioxidants (Basel) ; 10(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34829687

RESUMEN

Chondroitin sulfates (CS) are a class of sulfated glycosaminoglycans involved in many biological processes. Several studies reported their protective effect against neurodegenerative conditions like Alzheimer's disease. CS are commonly derived from animal sources, but ethical concerns, the risk of contamination with animal proteins, and the difficulty in controlling the sulfation pattern have prompted research towards non-animal sources. Here we exploited two microbiological-chemical sourced CS (i.e., CS-A,C and CS-A,C,K,L) and Carbopol 974P NF/agarose semi-interpenetrating polymer networks (i.e., P.NaOH.0 and P.Ethanol.0) to set up a release system, and tested the neuroprotective role of released CS against H2O2-induced oxidative stress. After assessing that our CS (1-100 µM) require a 3 h pre-treatment for neuroprotection with SH-SY5Y cells, we evaluated whether the autoclave type (i.e., N- or B-type) affects hydrogel viscoelastic properties. We selected B-type autoclaves and repeated the study after loading CS (1 or 0.1 mg CS/0.5 mL gel). After loading 1 mg CS/0.5 mL gel, we evaluated CS release up to 7 days by 1,9-dimethylmethylene blue (DMMB) assay and verified the neuroprotective role of CS-A,C (1 µM) in the supernatants. We observed that CS-A,C exhibits a broader neuroprotective effect than CS-A,C,K,L. Moreover, sulfation pattern affects not only neuroprotection, but also drug release.

16.
Biomacromolecules ; 22(12): 5151-5161, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34775751

RESUMEN

The several interesting activities detected for fucosylated chondroitin sulfate (fCS) have fueled in the last years several efforts toward the obtainment of fCS oligosaccharides and low molecular weight (LMW) polysaccharides with a well-defined structure, in order to avoid the problems associated with the potential employment of native, sea cucumber sourced fCSs as a drug. Total synthesis and controlled depolymerization of the natural fCS polysaccharides are the main approaches to this aim; nonetheless, they present some limitations. These could be circumvented by semisynthesis, a strategy relying upon the regioselective fucosylation and sulfation of a microbial sourced polysaccharide sharing the same chondroitin backbone of fCS but devoid of any fucose (Fuc) and sulfate decoration on it. This approach is highly versatile, as it could open access also to fCS isomers carrying Fuc and sulfate groups at non-natural sites. Here we prepare for the first time some structurally homogeneous fCS isomers through a multistep procedure with a glycosylation reaction between a LMW polysaccharide acceptor and three different Fuc donors as key step. The obtained products were subjected to a detailed structural characterization by 2D-NMR. The conformational behavior was also investigated by NMR and molecular dynamics simulation methods and compared with data reported for natural fCS.


Asunto(s)
Sulfatos de Condroitina , Pepinos de Mar , Animales , Sulfatos de Condroitina/química , Fucosa/química , Polisacáridos , Pepinos de Mar/química
17.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445409

RESUMEN

This article describes the synthesis, characterization, and biological activity of novel square-planar cationic platinum(II) complexes containing glucoconjugated triazole ligands and a comparison with the results obtained from the corresponding five-coordinate complexes bearing the same triazole ligands. Stability in solution, reactivity with DNA and small molecules of the new compounds were evaluated by NMR, fluorescence, and UV-vis absorption spectroscopy, together with their cytotoxic action against pairs of immortalized and tumorigenic cell lines. The results show that the square-planar species exhibit greater stability than the corresponding five-coordinate ones. Furthermore, although the square-planar complexes are less cytotoxic than the latter ones, they exhibit a certain selectivity. These results simultaneously demonstrate that overall stability is a fundamental prerequisite for preserving the performance of the agents and that coordinative saturation constitutes a point in favor of their biological action.


Asunto(s)
Antineoplásicos/síntesis química , Glucosa/química , Compuestos Organoplatinos/síntesis química , Triazoles/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Ligandos , Células MCF-7 , Estructura Molecular , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Espectroscopía de Protones por Resonancia Magnética , Ratas
18.
Carbohydr Polym ; 269: 118324, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294336

RESUMEN

Curdlan is a bacterial sourced polysaccharide, consisting of a linear backbone of ß-1 â†’ 3-linked glucose (Glc) units. The high interest in pharmaceutical applications of curdlan and derivatives thereof is fueling the study of multi-step sequences for regioselective modifications of its structure. Here we have developed semi-synthetic sequences based on a regioselective protection-sulfation-deprotection approach, allowing the access to some, new, low molecular weight curdlan polysaccharide derivatives with unprecedented sulfation patterns. Three different semi-synthetic schemes were investigated, all relying upon the installation of a cyclic benzylidene protecting group on Glc O-4,6-diols, followed by either direct sulfation and deprotection, or some additional steps - including a hydrolytic or oxidative cleavage of the benzylidene rings - prior to sulfation and deprotection. The six obtained polysaccharides were subjected to a detailed structural characterization by 2D-NMR analysis, revealing that some of them showed the majority of Glc units along the polymeric backbone decorated by unprecedented sulfation motifs.

19.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199374

RESUMEN

BACKGROUND: Skinboosters represent the latest category of hyaluronan (HA) hydrogels released for aesthetic purposes. Different from originally developed gels, they are intended for more superficial injections, claiming a skin rejuvenation effect through hydration and possibly prompting biochemical effects in place of the conventional volumetric action. Here, three commercial skinboosters were characterized to unravel the scientific basis for such indication and to compare their performances. METHODS: Gels were evaluated for water-soluble/insoluble-HA composition, rheology, hydration, cohesivity, stability and effect, in vitro, on human dermal fibroblasts towards the production of extracellular matrix components. RESULTS: Marked differences in the insoluble-hydrogel amount and in the hydrodynamic parameters for water-soluble-HA chains were evidenced among the gels. Hydration, rigidity and cohesivity also varied over a wide range. Sensitivity to hyaluronidases and Reactive Oxygen Species was demonstrated allowing a stability ranking. Slight differences were found in gels' ability to prompt elastin expression and in ColIV/ColI ratio. CONCLUSIONS: A wide panel of biophysical and biochemical parameters for skinboosters was provided, supporting clinicians in the conscious tuning of their use. Data revealed great variability in gels' behavior notwithstanding the same clinical indication and unexpected similarities to the volumetric formulations. Data may be useful to improve customization of gel design toward specific uses.


Asunto(s)
Ácido Hialurónico/química , Hialuronoglucosaminidasa/genética , Hidrogeles/química , Piel/efectos de los fármacos , Elastina/química , Fibroblastos/efectos de los fármacos , Humanos , Hialuronoglucosaminidasa/química , Inyecciones , Especies Reactivas de Oxígeno/química , Rejuvenecimiento/fisiología , Reología , Piel/crecimiento & desarrollo , Piel/patología , Envejecimiento de la Piel/genética , Viscosidad
20.
Polymers (Basel) ; 13(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478164

RESUMEN

Controlling chondroitin sulfates (CSs) biological functions to exploit their interesting potential biomedical applications requires a comprehensive understanding of how the specific sulfate distribution along the polysaccharide backbone can impact in their biological activities, a still challenging issue. To this aim, herein, we have applied an "holistic approach" recently developed by us to look globally how a specific sulfate distribution within CS disaccharide epitopes can direct the binding of these polysaccharides to growth factors. To do this, we have analyzed several polysaccharides of marine origin and semi-synthetic polysaccharides, the latter to isolate the structure-activity relationships of their rare, and even unnatural, sulfated disaccharide epitopes. SPR studies revealed that all the tested polysaccharides bind to FGF-2 (with exception of CS-8, CS-12 and CS-13) according to a model in which the CSs first form a weak complex with the protein, which is followed by maturation to tight binding with k D ranging affinities from ~ 1.31 µM to 130 µM for the first step and from ~ 3.88 µM to 1.8 nM for the second one. These binding capacities are, interestingly, related with the surface charge of the 3D-structure that is modulated by the particular sulfate distribution within the disaccharide repeating-units.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...