Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Dis ; 15(2): 911-926, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548932

RESUMEN

The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.


Asunto(s)
Envejecimiento , Pulmón , Animales , Ratones , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteínas Adaptadoras de la Señalización Shc/genética , Microtomografía por Rayos X , Envejecimiento/genética , Pulmón/diagnóstico por imagen , Oxidación-Reducción
2.
Eur Respir J ; 62(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37884305

RESUMEN

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Asunto(s)
Fumar Cigarrillos , Enfisema , Hipertensión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Hipertensión Pulmonar/complicaciones , Elastasa Pancreática/efectos adversos , Elastasa Pancreática/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/uso terapéutico , Fumar Cigarrillos/efectos adversos , Enfisema Pulmonar/etiología , Pulmón/metabolismo , Enfisema/complicaciones , Ratones Endogámicos C57BL
3.
Eur Respir J ; 61(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37105573

RESUMEN

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Neumonía , Humanos , Animales , Ratones , Nicotina/efectos adversos , Cigarrillo Electrónico a Vapor/efectos adversos , Cigarrillo Electrónico a Vapor/metabolismo , Neumonía/etiología , Neumonía/metabolismo , Pulmón/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología
4.
Br J Pharmacol ; 178(1): 152-171, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32201936

RESUMEN

BACKGROUND AND PURPOSE: Chronic obstructive pulmonary disease, encompassing chronic airway obstruction and lung emphysema, is a major worldwide health problem and a severe socio-economic burden. Evidence previously provided by our group has shown that inhibition of inducible NOS (iNOS) prevents development of mild emphysema in a mouse model of chronic tobacco smoke exposure and can even trigger lung regeneration. Moreover, we could demonstrate that pulmonary hypertension is not only abolished in cigarette smoke-exposed iNOS-/- mice but also precedes emphysema development. Possible regenerative effects of pharmacological iNOS inhibition in more severe models of emphysema not dependent on tobacco smoke, however, are hitherto unknown. EXPERIMENTAL APPROACH: We have established a mouse model using a single dose of porcine pancreatic elastase or saline, intratracheally instilled in C57BL/6J mice. Emphysema, as well as pulmonary hypertension development was determined by both structural and functional measurements. KEY RESULTS: Our data revealed that (i) emphysema is fully established after 21 days, with the same degree of emphysema after 21 and 28 days post instillation, (ii) emphysema is stable for at least 12 weeks and (iii) pulmonary hypertension is evident, in contrast to smoke models, only after emphysema development. Oral treatment with the iNOS inhibitor N(6)-(1-iminoethyl)-l-lysine (L-NIL) was started after emphysema establishment and continued for 12 weeks. This resulted in significant lung regeneration, evident in the improvement of emphysema and reversal of pulmonary hypertension. CONCLUSION AND IMPLICATIONS: Our data indicate that iNOS is a potential new therapeutic target to treat severe emphysema and associated pulmonary hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Asunto(s)
Enfisema , Hipertensión Pulmonar , Animales , Modelos Animales de Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Pulmón , Ratones , Ratones Endogámicos C57BL , Elastasa Pancreática , Humo/efectos adversos , Porcinos
5.
Nat Metab ; 2(6): 532-546, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32694733

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death worldwide. Peroxynitrite, formed from nitric oxide, which is derived from inducible nitric oxide synthase, and superoxide, has been implicated in the development of emphysema, but the source of the superoxide was hitherto not characterized. Here, we identify the non-phagocytic NADPH oxidase organizer 1 (NOXO1) as the superoxide source and an essential driver of smoke-induced emphysema and pulmonary hypertension development in mice. NOXO1 is consistently upregulated in two models of lung emphysema, Cybb (also known as NADPH oxidase 2, Nox2)-knockout mice and wild-type mice with tobacco-smoke-induced emphysema, and in human COPD. Noxo1-knockout mice are protected against tobacco-smoke-induced pulmonary hypertension and emphysema. Quantification of superoxide, nitrotyrosine and multiple NOXO1-dependent signalling pathways confirm that peroxynitrite formation from nitric oxide and superoxide is a driver of lung emphysema. Our results suggest that NOXO1 may have potential as a therapeutic target in emphysema.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Enfisema/tratamiento farmacológico , Enfisema/genética , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/efectos de los fármacos , Enfisema/etiología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Transducción de Señal/genética , Superóxidos/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Tirosina/análogos & derivados , Tirosina/metabolismo
7.
Eur Respir J ; 53(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30956210

RESUMEN

Chronic obstructive pulmonary disease (COPD), which comprises the phenotypes of chronic bronchitis and emphysema, is often associated with pulmonary hypertension (PH). However, currently, no approved therapy exists for PH-COPD. Signalling of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) axis plays an important role in PH and COPD.We investigated the treatment effect of riociguat, which promotes the NO-cGMP pathway, in the mouse model of smoke-induced PH and emphysema in a curative approach, and retrospectively analysed the effect of riociguat treatment on PH in single patients with PH-COPD.In mice with established PH and emphysema (after 8 months of cigarette smoke exposure), riociguat treatment for another 3 months fully reversed PH. Moreover, histological hallmarks of emphysema were decreased. Microarray analysis revealed involvement of different signalling pathways, e.g. related to matrix metalloproteinases (MMPs). MMP activity was decreased in vivo by riociguat. In PH-COPD patients treated with riociguat (n=7), the pulmonary vascular resistance, airway resistance and circulating MMP levels decreased, while oxygenation at rest was not significantly changed.Riociguat may be beneficial for treatment of PH-COPD. Further long-term prospective studies are necessary to investigate the tolerability, efficacy on functional parameters and effect specifically on pulmonary emphysema in COPD patients.


Asunto(s)
GMP Cíclico/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Óxido Nítrico/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/fisiopatología , Estudios Retrospectivos , Transducción de Señal , Guanilil Ciclasa Soluble/metabolismo , Investigación Biomédica Traslacional
8.
Am J Respir Cell Mol Biol ; 60(3): 357-366, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30321057

RESUMEN

It remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte-activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial-cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation.


Asunto(s)
Muerte Celular/fisiología , Células Endoteliales/virología , Infecciones por VIH/virología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Endotelio/virología , Células HEK293 , Infecciones por VIH/metabolismo , Humanos , Células Jurkat , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Pulmón/metabolismo , Pulmón/virología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Proteínas de Neoplasias/metabolismo , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/virología , Proteínas de Unión al ARN/metabolismo , Linfocitos T/metabolismo , Linfocitos T/virología
9.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L602-10, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27448665

RESUMEN

Epidemiological evidence demonstrates a strong link between postnatal cigarette smoke (CS) exposure and increased respiratory morbidity in young children. However, how CS induces early onset airway disease in young children, and how it interacts with endogenous risk factors, remains poorly understood. We, therefore, exposed 10-day-old neonatal wild-type and ß-epithelial sodium ion channel (ß-ENaC)-transgenic mice with cystic fibrosis-like lung disease to CS for 4 days. Neonatal wild-type mice exposed to CS demonstrated increased numbers of macrophages and neutrophils in the bronchoalveolar lavage fluid (BALF), which was accompanied by increased levels of Mmp12 and Cxcl1 BALF from ß-ENaC-transgenic mice contained greater numbers of macrophages, which did not increase following acute CS exposure; however, there was significant increase in airway neutrophilia compared with filtered air transgenic and CS-exposed wild-type controls. Interestingly, wild-type and ß-ENaC-transgenic mice demonstrated epithelial airway and vascular remodeling following CS exposure. Morphometric analysis of lung sections revealed that CS exposure caused increased mucus accumulation in the airway lumen of neonatal ß-ENaC-transgenic mice compared with wild-type controls, which was accompanied by an increase in the number of goblet cells and Muc5ac upregulation. We conclude that short-term CS exposure 1) induces acute airway disease with airway epithelial and vascular remodeling in neonatal wild-type mice; and 2) exacerbates airway inflammation, mucus hypersecretion, and mucus plugging in neonatal ß-ENaC-transgenic mice with chronic lung disease. Our results in neonatal mice suggest that young children may be highly susceptible to develop airway disease in response to tobacco smoke exposure, and that adverse effects may be aggravated in children with underlying chronic lung diseases.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica/etiología , Fumar/efectos adversos , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Animales Recién Nacidos , Femenino , Pulmón/irrigación sanguínea , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Humo/efectos adversos , Nicotiana/efectos adversos
10.
Respir Res ; 16: 127, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26483185

RESUMEN

BACKGROUND: Chronic obstructive lung disease (COPD) is a common cause of death in industrialized countries often induced by exposure to tobacco smoke. A substantial number of patients with COPD also suffer from pulmonary hypertension that may be caused by hypoxia or other hypoxia-independent stimuli - inducing pulmonary vascular remodeling. The Ca(2+) binding protein, S100A4 is known to play a role in non-COPD-driven vascular remodeling of intrapulmonary arteries. Therefore, we have investigated the potential involvement of S100A4 in COPD induced vascular remodeling. METHODS: Lung tissue was obtained from explanted lungs of five COPD patients and five non-transplanted donor lungs. Additionally, mice lungs of a tobacco-smoke-induced lung emphysema model (exposure for 3 and 8 month) and controls were investigated. Real-time RT-PCR analysis of S100A4 and RAGE mRNA was performed from laser-microdissected intrapulmonary arteries. S100A4 immunohistochemistry was semi-quantitatively evaluated. Mobility shift assay and siRNA knock-down were used to prove hypoxia responsive elements (HRE) and HIF binding within the S100A4 promoter. RESULTS: Laser-microdissection in combination with real-time PCR analysis revealed higher expression of S100A4 mRNA in intrapulmonary arteries of COPD patients compared to donors. These findings were mirrored by semi-quantitative analysis of S100A4 immunostaining. Analogous to human lungs, in mice with tobacco-smoke-induced emphysema an up-regulation of S100A4 mRNA and protein was observed in intrapulmonary arteries. Putative HREs could be identified in the promoter region of the human S100A4 gene and their functionality was confirmed by mobility shift assay. Knock-down of HIF1/2 by siRNA attenuated hypoxia-dependent increase in S100A4 mRNA levels in human primary pulmonary artery smooth muscle cells. Interestingly, RAGE mRNA expression was enhanced in pulmonary arteries of tobacco-smoke exposed mice but not in pulmonary arteries of COPD patients. CONCLUSIONS: As enhanced S100A4 expression was observed in remodeled intrapulmonary arteries of COPD patients, targeting S100A4 could serve as potential therapeutic option for prevention of vascular remodeling in COPD patients.


Asunto(s)
Arteria Pulmonar/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Proteínas S100/metabolismo , Fumar/efectos adversos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Arteria Pulmonar/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/genética , Enfisema Pulmonar/patología , Interferencia de ARN , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Elementos de Respuesta , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Transfección , Regulación hacia Arriba , Remodelación Vascular
11.
PLoS One ; 10(6): e0129327, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26058042

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. METHODS: C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. RESULTS: Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. CONCLUSION: Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.


Asunto(s)
Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 5/farmacología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/tratamiento farmacológico , Humo/efectos adversos , Animales , Benzamidas/farmacología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Modelos Animales de Enfermedad , Hipertensión Pulmonar/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Rendimiento Pulmonar/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Piridinas/farmacología , Fumar/efectos adversos , Tadalafilo/farmacología
12.
Am J Respir Crit Care Med ; 189(11): 1359-73, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24738736

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) is a major cause of death worldwide. No therapy stopping progress of the disease is available. OBJECTIVES: To investigate the role of the soluble guanylate cyclase (sGC)-cGMP axis in development of lung emphysema and pulmonary hypertension (PH) and to test whether the sGC-cGMP axis is a treatment target for these conditions. METHODS: Investigations were performed in human lung tissue from patients with COPD, healthy donors, mice, and guinea pigs. Mice were exposed to cigarette smoke (CS) for 6 hours per day, 5 days per week for up to 6 months and treated with BAY 63-2521. Guinea pigs were exposed to CS from six cigarettes per day for 3 months, 5 days per week and treated with BAY 41-2272. Both BAY compounds are sGC stimulators. Gene and protein expression analysis were performed by quantitative real-time polymerase chain reaction and Western blotting. Lung compliance, hemodynamics, right ventricular heart mass alterations, and alveolar and vascular morphometry were performed, as well as inflammatory cell infiltrate assessment. In vitro assays of cell adhesion, proliferation, and apoptosis have been done. MEASUREMENTS AND MAIN RESULTS: The functionally essential sGC ß1-subunit was down-regulated in patients with COPD and in CS-exposed mice. sGC stimulators prevented the development of PH and emphysema in the two different CS-exposed animal models. sGC stimulation prevented peroxynitrite-induced apoptosis of alveolar and endothelial cells, reduced CS-induced inflammatory cell infiltrate in lung parenchyma, and inhibited adhesion of CS-stimulated neutrophils. CONCLUSIONS: The sGC-cGMP axis is perturbed by chronic exposure to CS. Treatment of COPD animal models with sGC stimulators can prevent CS-induced PH and emphysema.


Asunto(s)
Enfisema/prevención & control , Guanilato Ciclasa/metabolismo , Hipertensión Pulmonar/prevención & control , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , Receptores Citoplasmáticos y Nucleares/metabolismo , Fumar/efectos adversos , Animales , Biomarcadores/metabolismo , Western Blotting , Modelos Animales de Enfermedad , Regulación hacia Abajo , Enfisema/enzimología , Cobayas , Humanos , Hipertensión Pulmonar/enzimología , Técnicas In Vitro , Ratones , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa , Fumar/metabolismo , Guanilil Ciclasa Soluble
13.
Mol Neurodegener ; 8: 25, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23866919

RESUMEN

BACKGROUND: The N-methyl-D-aspartate receptors are key mediators of excitatory transmission and are implicated in many forms of synaptic plasticity. These receptors are heterotetrameres consisting of two obligatory NR1 and two regulatory subunits, usually NR2A or NR2B. The NR2B subunits are abundant in the early postnatal brain, while the NR2A/NR2B ratio increases during early postnatal development. This shift is driven by NMDA receptor activity. A functional interplay of the Low Density Lipoprotein Receptor Related Protein 1 (LRP1) NMDA receptor has already been reported. Such abilities as interaction of LRP1 with NMDA receptor subunits or its important role in tPa-mediated NMDA receptor signaling were already demonstrated. Moreover, mice harboring a conditional neuronal knock-out mutation of the entire Lrp1 gene display NMDA-associated behavioral changes. However, the exact role of LRP1 on NMDA receptor function remains still elusive. RESULTS: To provide a mechanistic explanation for such effects we investigated whether an inactivating knock-in mutation into the NPxY2 motif of LRP1 might influence the cell surface expression of LRP1 and NMDA receptors in primary cortical neurons. Here we demonstrate that a knock-in into the NPxY2 motif of LRP1 results in an increased surface expression of LRP1 and NR2B NMDA receptor subunit due to reduced endocytosis rates of LRP1 and the NR2B subunit in primary neurons derived from LRP1ΔNPxY2 animals. Furthermore, we demonstrate an altered phosphorylation pattern of S1480 and Y1472 in the NR2B subunit at the surface of LRP1ΔNPxY2 neurons, while the respective kinases Fyn and casein kinase II are not differently regulated compared with wild type controls. Performing co-immunoprecipitation experiments we demonstrate that binding of LRP1 to NR2B might be linked by PSD95, is phosphorylation dependent and this regulation mechanism is impaired in LRP1ΔNPxY2 neurons. Finally, we demonstrate hyperactivity and changes in spatial and reversal learning in LRP1ΔNPxY2 mice, confirming the mechanistic interaction in a physiological readout. CONCLUSIONS: In summary, our data demonstrate that LRP1 plays a critical role in the regulation of NR2B expression at the cell surface and may provide a mechanistic explanation for the behavioral abnormalities detected in neuronal LRP1 knock-out animals reported earlier.


Asunto(s)
Neuronas/metabolismo , Receptores de LDL/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Conducta Animal/fisiología , Western Blotting , Células Cultivadas , Técnicas de Sustitución del Gen , Inmunoprecipitación , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...