Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005447

RESUMEN

HIV-1 integration occurs across actively transcribed genes due to the interaction of integrase with host chromatin factor LEDGF. Although LEDGF was originally isolated as a co-activator that stimulates promoter activity in purified systems, this role is inconsistent with LEDGF-mediated integration across gene bodies and with data indicating LEDGF is a histone chaperone that promotes transcriptional elongation. We found LEDGF is enriched in pronounced peaks that match the enrichments of H3K4me3 and RNA Pol II at transcription start sites (TSSs) of active promoters. Our genome-wide chromatin mapping revealed that MLL1 had a dominant role in recruiting LEDGF to promoters and the presence of LEDGF recruits RNA Pol II. Enrichment of LEDGF at TSSs correlates strongly with levels of integration across the transcribed sequences, indicating that LEDGF at TSSs contributed to integration across gene bodies. Although the N-terminal Pro-Trp-Trp-Pro (PWWP) domain of LEDGF interacts with nucleosomes containing H3K36me3, a modification thought to recruit LEDGF to chromatin, we found H3K36me3 does not contribute to gene specificity of integration. These data support a dual role model of LEDGF where it is tethered to promoters by MLL1 and recruits RNA Pol II. Subsequently, LEDGF travels across genes to effect HIV-1 integration. Our data also provides a mechanistic context for the contribution made by LEDGF to MLL1-based infant acute leukemia and acute myeloid leukemia in adults.

2.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979149

RESUMEN

The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting. Here, we used a CPSF6 truncation mutant lacking a functional nuclear localization signal (NLS), CPSF6-358, and appended heterologous NLSs to rescue nuclear localization. We show that some, but not all, NLSs drive CPSF6-358 into the nucleus. Interestingly, we found that some nuclear localized CPSF6-NLS chimeras supported inefficient HIV-1 infection. We found that HIV-1 still enters the nucleus in these cell lines but fails to traffic to speckle-associated domains (SPADs). Additionally, we show that HIV-1 fails to efficiently integrate in these cell lines. Collectively, our results demonstrate that the NLS of CPSF6 facilitates steps of HIV-1 infection subsequent to nuclear import and additionally identify the ability of canonical NLS sequences to influence cargo localization in the nucleus following nuclear import.

3.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957382

RESUMEN

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Masculino , Femenino , VIH-1/genética , Viremia , Provirus/genética , Provirus/metabolismo , Infecciones por VIH/tratamiento farmacológico , Linfocitos T CD4-Positivos , ARN Viral , Carga Viral
4.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034605

RESUMEN

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

5.
Nat Struct Mol Biol ; 30(4): 425-435, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807645

RESUMEN

Delivering the virus genome into the host nucleus through the nuclear pore complex (NPC) is pivotal in human immunodeficiency virus 1 (HIV-1) infection. The mechanism of this process remains mysterious owing to the NPC complexity and the labyrinth of molecular interactions involved. Here we built a suite of NPC mimics-DNA-origami-corralled nucleoporins with programmable arrangements-to model HIV-1 nuclear entry. Using this system, we determined that multiple cytoplasm-facing Nup358 molecules provide avid binding for capsid docking to the NPC. The nucleoplasm-facing Nup153 preferentially attaches to high-curvature regions of the capsid, positioning it for tip-leading NPC insertion. Differential capsid binding strengths of Nup358 and Nup153 constitute an affinity gradient that drives capsid penetration. Nup62 in the NPC central channel forms a barrier that viruses must overcome during nuclear import. Our study thus provides a wealth of mechanistic insight and a transformative toolset for elucidating how viruses like HIV-1 enter the nucleus.


Asunto(s)
VIH-1 , Proteínas de Complejo Poro Nuclear , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo , VIH-1/metabolismo , Línea Celular , Transporte Activo de Núcleo Celular/genética , Proteínas de la Cápside/metabolismo , ADN/metabolismo , Poro Nuclear/metabolismo
6.
Viruses ; 14(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36146690

RESUMEN

Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/genética , VIH-1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , ARN , Integración Viral , Replicación Viral
7.
Nat Commun ; 13(1): 2416, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504909

RESUMEN

A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.


Asunto(s)
ADN Viral , Integrasas , Animales , Humanos , Dominio Catalítico , ADN Viral/metabolismo , Integrasas/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Modelos Moleculares , Retroviridae/genética , Ovinos/genética , Integración Viral
8.
Cells ; 11(4)2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35203306

RESUMEN

HIV-1 integrase and capsid proteins interact with host proteins to direct preintegration complexes to active transcription units within gene-dense regions of chromosomes for viral DNA integration. Analyses of spatially-derived genomic DNA coordinates, such as nuclear speckle-associated domains, lamina-associated domains, super enhancers, and Spatial Position Inference of the Nuclear (SPIN) genome states, have further informed the mechanisms of HIV-1 integration targeting. Critically, however, these different types of genomic coordinates have not been systematically analyzed to synthesize a concise description of the regions of chromatin that HIV-1 prefers for integration. To address this informational gap, we have extensively correlated genomic DNA coordinates of HIV-1 integration targeting preferences. We demonstrate that nuclear speckle-associated and speckle-proximal chromatin are highly predictive markers of integration and that these regions account for known HIV biases for gene-dense regions, highly transcribed genes, as well as the mid-regions of gene bodies. In contrast to a prior report that intronless genes were poorly targeted for integration, we find that intronless genes in proximity to nuclear speckles are more highly targeted than are spatially-matched intron-containing genes. Our results additionally highlight the contributions of capsid and integrase interactions with respective CPSF6 and LEDGF/p75 host factors in these HIV-1 integration targeting preferences.


Asunto(s)
VIH-1 , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Cromatina/metabolismo , VIH-1/genética , VIH-1/metabolismo , Interacciones Huésped-Patógeno/genética , Integración Viral/genética
9.
Nucleic Acids Res ; 49(13): 7330-7346, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34165568

RESUMEN

HIV-1 integration favors recurrent integration gene (RIG) targets and genic proviruses can confer cell survival in vivo. However, the relationship between initial RIG integrants and how these evolve in patients over time are unknown. To address these shortcomings, we built phenomenological models of random integration in silico, which were used to identify 3718 RIGs as well as 2150 recurrent avoided genes from 1.7 million integration sites across 10 in vitro datasets. Despite RIGs comprising only 13% of human genes, they harbored 70% of genic HIV-1 integrations across in vitro and patient-derived datasets. Although previously reported to associate with super-enhancers, RIGs tracked more strongly with speckle-associated domains. While depletion of the integrase cofactor LEDGF/p75 significantly reduced recurrent HIV-1 integration in vitro, LEDGF/p75 primarily occupied non-speckle-associated regions of chromatin, suggesting a previously unappreciated dynamic aspect of LEDGF/p75 functionality in HIV-1 integration targeting. Finally, we identified only six genes from patient samples-BACH2, STAT5B, MKL1, MKL2, IL2RB and MDC1-that displayed enriched integration targeting frequencies and harbored proviruses that likely contributed to cell survival. Thus, despite the known preference of HIV-1 to target cancer-related genes for integration, we conclude that genic proviruses play a limited role to directly affect cell proliferation in vivo.


Asunto(s)
Genómica/métodos , VIH-1/genética , Integración Viral , Proteínas Adaptadoras Transductoras de Señales/fisiología , Células HEK293 , Infecciones por VIH/genética , Humanos , Células Jurkat , Modelos Biológicos , Provirus , Factores de Transcripción/fisiología
10.
Elife ; 102021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061028

RESUMEN

High-resolution imaging techniques reveal new insights into the actions of the retrovirus HIV-1 inside host cells.


Asunto(s)
VIH-1 , Desencapsidación Viral
11.
Nucleic Acids Res ; 49(2): 621-635, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33337475

RESUMEN

The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Integración Viral , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Cromatina/genética , Cromatina/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Proteínas del Citoesqueleto/metabolismo , Transcriptasa Inversa del VIH/fisiología , VIH-1/enzimología , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Interfase , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Dominios Proteicos , Factores de Transcripción/deficiencia , Factores de Transcripción/fisiología , Integración Viral/genética , Integración Viral/fisiología , Latencia del Virus , Replicación Viral , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/fisiología
12.
mBio ; 11(5)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994325

RESUMEN

Lentiviral DNA integration favors transcriptionally active chromatin. We previously showed that the interaction of human immunodeficiency virus type 1 (HIV-1) capsid with cleavage and polyadenylation specificity factor 6 (CPSF6) localizes viral preintegration complexes (PICs) to nuclear speckles for integration into transcriptionally active speckle-associated domains (SPADs). In the absence of the capsid-CPSF6 interaction, PICs uncharacteristically accumulate at the nuclear periphery and target heterochromatic lamina-associated domains (LADs) for integration. The integrase-binding protein lens epithelium-derived growth factor (LEDGF)/p75 in contrast to CPSF6 predominantly functions to direct HIV-1 integration to interior regions of transcription units. Though CPSF6 and LEDGF/p75 can reportedly interact with the capsid and integrase proteins of both primate and nonprimate lentiviruses, the extents to which these different viruses target SPADs versus LADs, as well as their dependencies on CPSF6 and LEDGF/p75 for integration targeting, are largely unknown. Here, we mapped 5,489,157 primate and nonprimate lentiviral integration sites in HEK293T and Jurkat T cells as well as derivative cells that were knocked out or knocked down for host factor expression. Despite marked preferences of all lentiviruses to target genes for integration, nonprimate lentiviruses only marginally favored SPADs, with corresponding upticks in LAD-proximal integration. While LEDGF/p75 knockout disrupted the intragenic integration profiles of all lentiviruses similarly, CPSF6 depletion specifically counteracted SPAD integration targeting by primate lentiviruses. CPSF6 correspondingly failed to appreciably interact with nonprimate lentiviral capsids. We conclude that primate lentiviral capsid proteins evolved to interact with CPSF6 to optimize PIC localization for integration into transcriptionally active SPADs.IMPORTANCE Integration is the defining step of the retroviral life cycle and underlies the inability to cure HIV/AIDS through the use of intensified antiviral therapy. The reservoir of latent, replication-competent proviruses that forms early during HIV infection reseeds viremia when patients discontinue medication. HIV cure research is accordingly focused on the factors that guide provirus formation and associated chromatin environments that regulate transcriptional reactivation, and studies of orthologous infectious agents such as nonprimate lentiviruses can inform basic principles of HIV biology. HIV-1 utilizes the integrase-binding protein LEDGF/p75 and the capsid interactor CPSF6 to target speckle-associated domains (SPADs) for integration. However, the extent to which these two host proteins regulate integration of other lentiviruses is largely unknown. Here, we mapped millions of retroviral integration sites in cell lines that were depleted for LEDGF/p75 and/or CPSF6. Our results reveal that primate lentiviruses uniquely target SPADs for integration in a CPSF6-dependent manner.


Asunto(s)
Lentivirus/genética , Primates/genética , Integración Viral/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Animales , Gatos/genética , Gatos/virología , Bovinos/genética , Bovinos/virología , Línea Celular , Evolución Molecular , Células HEK293 , Caballos/genética , Caballos/virología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Células Jurkat , Macaca mulatta/genética , Macaca mulatta/virología , Ratones/genética , Ratones/virología , Primates/virología , Replicación Viral
13.
Antiviral Res ; 169: 104544, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31254557

RESUMEN

Due to its multifaceted essential roles in virus replication and extreme genetic fragility, the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein is a valued therapeutic target. However, CA is as yet unexploited clinically, as there are no antiviral agents that target it currently on the market. To facilitate the identification of potential HIV-1 CA inhibitors, we established a homogeneous time-resolved fluorescence (HTRF) assay to screen for small molecules that target a biologically active and specific binding pocket in the C-terminal domain of HIV-1 CA (CA CTD). The assay, which is based on competition of small molecules for the binding of a known CA inhibitor (CAI) to the CA CTD, exhibited a signal-to-background ratio (S/B) > 10 and a Z' value > 0.9. In a pilot screen of three kinase inhibitor libraries containing 464 compounds, we identified one compound, TX-1918, as a low micromolecular inhibitor of the HIV-1 CA CTD-CAI interaction (IC50 = 3.81 µM) that also inhibited viral replication at moderate micromolar concentration (EC50 = 15.16 µM) and inhibited CA assembly in vitro. Based on the structure of TX-1918, an additional compound with an antiviral EC50 of 6.57 µM and cellular cytotoxicity CC50 of 102.55 µM was obtained from a compound similarity search. Thus, the HTRF-based assay has properties that are suitable for screening large compound libraries to identify novel anti-HIV-1 inhibitors targeting the CA CTD.


Asunto(s)
Unión Competitiva , Proteínas de la Cápside/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Fluorescencia , VIH-1/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensamble de Virus/efectos de los fármacos , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Liberación de Fármacos , Proteínas Recombinantes , Linfocitos T , Replicación Viral/efectos de los fármacos
14.
Nucleic Acids Res ; 47(9): 4663-4683, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916345

RESUMEN

Cleavage factor I mammalian (CFIm) complex, composed of cleavage and polyadenylation specificity factor 5 (CPSF5) and serine/arginine-like protein CPSF6, regulates alternative polyadenylation (APA). Loss of CFIm function results in proximal polyadenylation site usage, shortening mRNA 3' untranslated regions (UTRs). Although CPSF6 plays additional roles in human disease, its nuclear translocation mechanism remains unresolved. Two ß-karyopherins, transportin (TNPO) 1 and TNPO3, can bind CPSF6 in vitro, and we demonstrate here that while the TNPO1 binding site is dispensable for CPSF6 nuclear import, the arginine/serine (RS)-like domain (RSLD) that mediates TNPO3 binding is critical. The crystal structure of the RSLD-TNPO3 complex revealed potential CPSF6 interaction residues, which were confirmed to mediate TNPO3 binding and CPSF6 nuclear import. Both binding and nuclear import were independent of RSLD phosphorylation, though a hyperphosphorylated mimetic mutant failed to bind TNPO3 and mislocalized to the cell cytoplasm. Although hypophosphorylated CPSF6 largely supported normal polyadenylation site usage, a significant number of mRNAs harbored unnaturally extended 3' UTRs, similar to what is observed when other APA regulators, such as CFIIm component proteins, are depleted. Our results clarify the mechanism of CPSF6 nuclear import and highlight differential roles for RSLD phosphorylation in nuclear translocation versus regulation of APA.


Asunto(s)
Poliadenilación/genética , Conformación Proteica , Proteínas de Unión al ARN/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular/genética , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Fosforilación/genética , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , ARN Mensajero , Proteínas de Unión al ARN/genética , beta Carioferinas/genética , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética
15.
Langmuir ; 33(23): 5925-5931, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28514857

RESUMEN

Proteins are widely utilized as templates in biomimetic synthesis of gold nanocrystals. However, the role of proteins in mediating the pathways for gold nucleation and growth is not well understood, in part because of the lack of spatial resolution in probing the complicated biomimetic mineralization process. Self-assembled protein cages, with larger size and symmetry, can facilitate in the visualization of both biological and inorganic components. We have utilized bacteriophage P22 protein cages of ∼60 nm diameter for investigating the nucleation and growth of gold nanocrystals. By adding a gold precursor into the solution with preexisting protein cages and a reducing agent, gold nuclei/prenucleation clusters form in solution, which then locate and attach to specific binding sites on protein cages and further grow to form gold nanocrystals. By contrast, addition of the reducing agent into the solution with incubated gold precursor and protein cages leads to the formation of gold nuclei/prenucleation clusters both in solution and on the surface of protein cages that then grow into gold nanocrystals. Because of the presence of cysteine (Cys) with strong gold-binding affinity, gold nanocrystals tend to bind at specific sites of Cys, irrespective of the binding sites of gold ions. Analyzing the results obtained using these alternate routes provide important insights into the pathways of protein-mediated biomimetic nucleation of gold that challenge the importance of incubation, which is widely utilized in the biotemplated synthesis of inorganic nanocrystals.


Asunto(s)
Nanopartículas del Metal , Biomimética , Oro , Proteínas
16.
Virology ; 505: 127-138, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28242514

RESUMEN

The portal vertex in dsDNA bacteriophage serves as the site for genome encapsidation and release. In several of these viruses, efficient termination of DNA packaging has been shown to be dependent on the density of packaged DNA. The portal protein has been implicated as being part of the sensor that regulates packaging termination through DNA-dependent conformational changes during packaging. The mechanism by which DNA induces these conformational changes remains unknown. In this study, we explore how point mutants in the portal core can result in changes in genome packaging density in P22. Mutations in the portal core that subtly alter the structure or dynamics of the protein result in an increase in the amount of DNA packaged. The magnitude of the change is amino acid and location specific. Our findings suggest a mechanism wherein compression of the portal core is an essential aspect of signal transmission during packaging.


Asunto(s)
Bacteriófago P22/genética , Proteínas de la Cápside/metabolismo , Empaquetamiento del ADN/genética , ADN Viral/genética , Salmonella/genética , Ensamble de Virus/fisiología , Bacteriófago P22/fisiología , Conformación de Ácido Nucleico , Transducción de Señal/genética
17.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795440

RESUMEN

During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE: Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.


Asunto(s)
Bacteriófago phi X 174/química , Proteínas de la Cápside/química , Cápside/química , Regulación Viral de la Expresión Génica , Ensamble de Virus , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Evolución Molecular Dirigida , Genes Letales , Aptitud Genética , Cinética , Modelos Moleculares , Mutación , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína
18.
Nat Commun ; 7: 10714, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26940118

RESUMEN

The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Ciclofilina A/farmacología , Regulación Viral de la Expresión Génica/fisiología , Dominio Catalítico , Simulación por Computador , Escherichia coli/metabolismo , VIH-1 , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ensamble de Virus
19.
PLoS One ; 10(5): e0126420, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25997164

RESUMEN

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.


Asunto(s)
Ultracentrifugación/métodos , Ultracentrifugación/normas , Calibración , Reproducibilidad de los Resultados
20.
Chem Commun (Camb) ; 51(6): 1062-5, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25435024

RESUMEN

Plasmonic photocatalytic nanostructures have been fabricated under mild conditions (room temperature aqueous solution) using genetically engineered bacteriophage P22 virus-like particles (VLP) as a nano-platform. The photodegradation of methylene blue by CdS photocatalyst confined inside VLP can be significantly enhanced by the controlled deposition of gold nanoparticles on the outer shell of VLP-CdS.


Asunto(s)
Bacteriófago P22/química , Compuestos de Cadmio/química , Oro/química , Luz , Nanopartículas/química , Catálisis , Microscopía Electrónica de Transmisión , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA