Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 377(6614): eabo2196, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36007009

RESUMEN

The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.

2.
Science ; 377(6614): 1513-1519, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36007094

RESUMEN

The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We found that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multistage cooling of a thick magma body.

3.
Science ; 343(6169): 1242777, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324272

RESUMEN

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Agua , Bahías , Carbono/análisis , Sedimentos Geológicos/análisis , Sedimentos Geológicos/clasificación , Hidrógeno/análisis , Concentración de Iones de Hidrógeno , Hierro/análisis , Hierro/química , Nitrógeno/análisis , Oxidación-Reducción , Oxígeno/análisis , Fósforo/análisis , Salinidad , Azufre/análisis , Azufre/química
4.
Science ; 343(6169): 1247166, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324273

RESUMEN

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced (3)He, (21)Ne, and (36)Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Asunto(s)
Radiación Cósmica , Evolución Planetaria , Exobiología , Medio Ambiente Extraterrestre/química , Marte , Gases Nobles/análisis , Biomarcadores/análisis , Biomarcadores/química , Sedimentos Geológicos , Isótopos/análisis , Isótopos/química , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Dosis de Radiación , Datación Radiométrica , Propiedades de Superficie
5.
Anal Chem ; 73(13): 3028-34, 2001 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-11467550

RESUMEN

Our aim in this investigation was to demonstrate the potential of the high-resolution electrospray ionization ion mobility spectrometry (ESI-IMS) technique as an analytical separation tool in analyzing biomolecular mixtures to pursue astrobiological objectives of searching for the chemical signatures of life during an in-situ exploration of solar system bodies. Because amino acids represent the basic building blocks of life, we used common amino acids to conduct the first part of our investigation, which is being reported here, to demonstrate the feasibility of using the ESI-IMS technique for detection of the chemical signatures of life. The ion mobilities of common amino acids were determined by electrospray ionization ion mobility spectrometry using three different drift gases (N2, Ar, and CO2). We demonstrated that the selectivity can be vastly improved in ion mobility spectroscopy (IMS) in detecting organic molecules by using different drift gases. When a judicial choice of drift gas is made, a vastly improved separation of two different amino acid ions resulted. It was found that each of the studied amino acids could be uniquely identified from the others, with the exception of alanine and glycine, which were never separable by more then 0.1 ms. This unique identification is a result of the different polarizabilities of the various drift gases. In addition, a better separation was achieved by changing the drift voltage in successive experimental runs without significantly degrading the resolution. We also report the result of our analysis of liquid samples containing mixtures of amino acids.


Asunto(s)
Aminoácidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(4): 737-44, 2001 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11345250

RESUMEN

While many of the characteristics of the cosmic unidentified infrared (UIR) emission bands observed for interstellar and circumstellar sources within the Milky Way and other galaxies, can be best attributed to vibrational modes of the variants of the molecular family known as polycyclic aromatic hydrocarbons (PAH), there are open questions that need to be resolved. Among them is the observed strength of the 6.2 micron (1600 cm(-1)) band relative to other strong bands, and the generally low strength for measurements in the laboratory of the 1600 cm(-1) skeletal vibration band of many specific neutral PAH molecules. Also, experiments involving laser excitation of some gas phase neutral PAH species while producing long lifetime state emission in the 3.3 micron (3000 cm(-1)) spectral region, do not result in significant 6.2 micron (1600 cm(-1)) emission. A potentially important variant of the neutral PAH species, namely hydrogenated-PAH (H(N)-PAH) which exhibit intriguing spectral correlation with interstellar and circumstellar infrared emission and the 2175 A extinction feature, may be a factor affecting the strength of 6.2 micron emission. These species are hybrids of aromatic and cycloalkane structures. Laboratory infrared absorption spectroscopy augmented by density function theory (DFT) computations of selected partially hydrogenated-PAH molecules, demonstrates enhanced 6.2 micron (1600 cm(-1)) region skeletal vibration mode strength for these molecules relative to the normal PAH form. This along with other factors such as ionization or the incorporation of nitrogen or oxygen atoms could be a reason for the strength of the cosmic 6.2 micron (1600 cm(-1)) feature.


Asunto(s)
Polvo Cósmico/análisis , Hidrocarburos Policíclicos Aromáticos/química , Fenómenos Astronómicos , Astronomía , Radiación Cósmica , Hidrogenación , Rayos Infrarrojos
7.
Astrophys J ; 535(2 Pt 1): 815-22, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11543517

RESUMEN

We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species, provide insight into possible molecular structure details of newly formed hydrocarbon-rich interstellar dust and its transformation into aged material that becomes resident in the interstellar medium. Specifically the presence of naphthalene-like and butadiene-like conjugated structures as chromophores for the 2175 angstroms ultraviolet extinction feature is indicated.


Asunto(s)
Polvo Cósmico/análisis , Naftalenos/química , Hidrocarburos Policíclicos Aromáticos/química , Cicloparafinas/química , Exobiología , Medio Ambiente Extraterrestre , Helio/química , Hidrógeno/química , Nitrógeno/química , Oxígeno/química , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Vacio
8.
Astrophys J ; 474(1): 474-8, 1997 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11540592

RESUMEN

The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.


Asunto(s)
Astronomía/métodos , Medio Ambiente Extraterrestre , Hidrocarburos Policíclicos Aromáticos/análisis , Cationes , Polvo Cósmico , Exobiología , Espectrofotometría Ultravioleta
9.
Astrophys J ; 487(2 Pt 1): 976-82, 1997 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11540492

RESUMEN

Experiments where the simple polycyclic aromatic hydrocarbon (PAH) naphthalene (C10H8) is subjected to the energetic environment of a plasma have resulted in the synthesis of a molecular aggregate that has ultraviolet spectral characteristics that suggest it provides insight into the nature of the carrier of the 2175 angstroms interstellar extinction feature and may be a laboratory analog. Ultraviolet, visible, infrared, and mass spectroscopy, along with gas chromatography, indicate that it is a molecular aggregate in which an aromatic double ring ("naphthalene") structural base serves as the electron "box" chromophore that gives rise to the envelope of the 2175 angstroms feature. This chromophore can also provide the peak of the feature or function as a mantle in concert with another peak provider such as graphite. The molecular base/chromophore manifests itself both as a structural component of an alkyl-aromatic polymer and as a substructure of hydrogenated PAH species. Its spectral and molecular characteristics are consistent with what is generally expected for a complex molecular aggregate that has a role as an interstellar constituent.


Asunto(s)
Medio Ambiente Extraterrestre , Gases/análisis , Naftalenos/química , Fenómenos Astronómicos , Astronomía , Cromatografía de Gases y Espectrometría de Masas , Naftalenos/análisis , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
10.
Astrophys J ; 486(2): L153-5, 1997 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-11540593

RESUMEN

A mixture of the polycyclic aromatic hydrocarbons (PAHs), acenaphthylene and acenaphthene, when subjected to the energetic environment of a hydrogen plasma, is transformed into a material that exhibits an infrared absorption profile in the 3 micron region that is an excellent match of the protoplanetary nebula IRAS 05341+0852 emission profile in the same wavelength region. Acenaphthylene and acenaphthene were chosen as precursors in the experiment because these molecules have a structure that can be described as a keystone in a process in which carbon atoms in a stellar wind condense into PAH species. The spectral match between experiment and observations appears to validate that scenario.


Asunto(s)
Acenaftenos/química , Astronomía/métodos , Medio Ambiente Extraterrestre , Hidrocarburos Policíclicos Aromáticos/química , Exobiología , Espectroscopía Infrarroja por Transformada de Fourier
11.
Planet Space Sci ; 43(10-11): 1175-82, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-11540308

RESUMEN

Processes resulting in the formation of hydrocarbons of carbonaceous chondrites and the identity of the interstellar molecular precursors involved are an objective of investigations into the origin of the solar system and perhaps even life on earth. We have combined the resources and experience of an astronomer and physicists doing laboratory simulations with those of a chemical expert in the analysis of meteoritic hydrocarbons, in a project that investigated the conversion of polycyclic aromatic hydrocarbons (PAHs) formed in stellar atmospheres into alkanes found in meteorites. Plasma hydrogenation has been found in the University of Alabama at Birmingham Astrophysics Laboratory to produce from the precursor PAH naphthalene, a new material having an IR absorption spectrum (Lee, W. and Wdowiak, T.J., Astrophys. J. 417, L49-L51, 1993) remarkably similar to that obtained at Arizona State University of the benzene-methanol extract of the Murchison meteorite (Cronin, J.R. and Pizzarello, S., Geochim. Cosmochim. Acta 54, 2859-2868, 1990). There are astrophysical and meteoritic arguments for PAH species from extra-solar sources being incorporated into the solar nebula, where plasma hydrogenation is highly plausible. Conversion of PAHs into alkanes could also have occurred in the interstellar medium. The synthesis of laboratory analogs of meteoritic hydrocarbons through plasma hydrogenation of PAH species is underway, as is chemical analysis of those analogs. The objective is to clarify this heretofore uninvestigated process and to understand its role during the origin of the solar system as a mechanism of production of hydrocarbon species now found in meteorites. Results have been obtained in the form of time-of-flight spectroscopy and chemical analysis of the lab analog prepared from naphthalene.


Asunto(s)
Alcanos/síntesis química , Medio Ambiente Extraterrestre , Hidrógeno/química , Meteoroides , Naftalenos/química , Hidrocarburos Policíclicos Aromáticos/química , Sistema Solar , Polvo Cósmico/análisis , Deuterio , Electrodos , Evolución Química , Cromatografía de Gases y Espectrometría de Masas , Enlace de Hidrógeno , Hidrogenación , Hidrocarburos Policíclicos Aromáticos/síntesis química , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...