Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 8(3): e0100222, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37199915

RESUMEN

RNA viruses are ubiquitous components of the global virosphere, yet relatively little is known about their genetic diversity or the cellular mechanisms by which they exploit the biology of their diverse eukaryotic hosts. A hallmark of (+)ssRNA (positive single-stranded RNA) viruses is the ability to remodel host endomembranes for their own replication. However, the subcellular interplay between RNA viruses and host organelles that harbor gene expression systems, such as mitochondria, is complex and poorly understood. Here we report the discovery of 763 new virus sequences belonging to the family Mitoviridae by metatranscriptomic analysis, the identification of previously uncharacterized mitovirus clades, and a putative new viral class. With this expanded understanding of the diversity of mitovirus and encoded RNA-dependent RNA polymerases (RdRps), we annotate mitovirus-specific protein motifs and identify hallmarks of mitochondrial translation, including mitochondrion-specific codons. This study expands the known diversity of mitochondrial viruses and provides additional evidence that they co-opt mitochondrial biology for their survival. IMPORTANCE Metatranscriptomic studies have rapidly expanded the cadre of known RNA viruses, yet our understanding of how these viruses navigate the cytoplasmic milieu of their hosts to survive remains poorly characterized. In this study, we identify and assemble 763 new viral sequences belonging to the Mitoviridae, a family of (+)ssRNA viruses thought to interact with and remodel host mitochondria. We exploit this genetic diversity to identify new clades of Mitoviridae, annotate clade-specific sequence motifs that distinguish the mitoviral RdRp, and reveal patterns of RdRp codon usage consistent with translation on host cell mitoribosomes. These results serve as a foundation for understanding how mitoviruses co-opt mitochondrial biology for their proliferation.


Asunto(s)
Virus ARN , Virus , Sistemas de Lectura Abierta , Virus ARN/genética , Virus/genética , Codón , ARN Polimerasa Dependiente del ARN/genética
2.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Humanos , Ratones , Mucinas/genética , SARS-CoV-2
3.
EMBO Rep ; 21(10): e49735, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32945124

RESUMEN

Maintaining proteome health is important for cell survival. Nucleic acids possess the ability to prevent protein aggregation more efficiently than traditional chaperone proteins. In this study, we explore the sequence specificity of the chaperone activity of nucleic acids. Evaluating over 500 nucleic acid sequences' effects on protein aggregation, we show that the holdase chaperone effect of nucleic acids is sequence-dependent. G-Quadruplexes prevent protein aggregation via quadruplex:protein oligomerization. They also increase the folded protein level of a biosensor in E. coli. These observations contextualize recent reports of quadruplexes playing important roles in aggregation-related diseases, such as fragile X and amyotrophic lateral sclerosis (ALS), and provide evidence that nucleic acids have the ability to modulate the folding environment of E. coli.


Asunto(s)
G-Cuádruplex , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...