Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 143(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33543246

RESUMEN

Though energy attenuating (EA) seats for air and spacecraft applications have existed for decades, they have not yet been fully characterized for their energy attenuation capability or resulting effect on occupant protection in vertical underbody blast. EA seats utilize stroking mechanisms to absorb energy and reduce the vertical forces imparted on the occupant's pelvis and lower spine. Using dynamic rigid-body modeling, a virtual tool to determine optimal force and deflection limits was developed to reduce pelvis and lower spine injuries in underbody blast events using a generic seat model. The tool consists of a mathematical dynamic model (MADYMO)-modified human body model (HBM), basic EA seat model, and an optimizing sequence using modefrontier software. This optimizing tool may be shared with EA seat manufacturers and applied to military seat development efforts for EA mechanisms for a given occupant and designated blast severity. To optimally tune the EA seat response, the MADYMO human body model was first updated to improve its fidelity in kinematic response data for high rate vertical accelerative loading relative to experimental data from laboratory simulated underbody blast tests using postmortem human surrogates (PMHS). Subsequently, using available injury criteria for underbody blast, the optimization tool demonstrated the ability to identify successful EA mechanism critical design value configurations to reduce forces and accelerations in the pelvis and lower spine HBM to presumed noninjurious levels. This tool could be tailored by varying input pulses, force and deflection limits, and occupant size to evaluate EA mechanism designs.


Asunto(s)
Explosiones
2.
J Mech Behav Biomed Mater ; 101: 103446, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577984

RESUMEN

Growth plate (GP) is a type of tissue widely found in child's immature skeleton. It may have significant influence on the overall injury pattern since it has distinguishing mechanical properties compared to the surrounding bony tissue. For more accurate material modeling and advanced pediatric human body modeling, it is imperative to investigate the material property of GPs in different loading conditions. In this study, a series of tensile and shearing experiments on porcine bone-GP-bone units were carried out. Total 113 specimens of bone-GP-bone unit from the femoral head, distal femur, and proximal tibia of four 20-weeks-old piglets were tested, under different strain rates (average 0.0053 to 1.907 s-1 for tensile tests, and 0.0085 to 3.037 s-1 for shearing tests). Randomized block ANOVA was conducted to determine the effects of anatomic region and strain rate on the material properties of GPs. It was found that, strain rate is a significant factor for modulus and ultimate stress for both tensile and shearing tests; the ultimate strains are not sensitive to the input factors in both tensile and shearing tests; the GPs at knee region could be grouped due to similar properties, but statistically different from the femoral head GP. Additionally, the tensile test data from the experimental study were comparing to the limited data obtained from tests on human subjects reported in the literature. An optimal conversion factor was derived to correlate the material properties of 20-week-old piglet GPs and 10 YO child GPs. As a result, the estimated material properties of 10 YO child GPs from different regions in different loading conditions became available given the conversion law stays legitimate. These estimated material properties for 10 YO child GPs were reported in the form of tensile and shearing stress-strain curves and could be subsequently utilized for human GP tissue material modeling and child injury mechanism studies.


Asunto(s)
Placa de Crecimiento/fisiología , Animales , Niño , Humanos , Pruebas Mecánicas , Estrés Mecánico , Porcinos , Resistencia a la Tracción , Soporte de Peso
3.
Stapp Car Crash J ; 50: 415-28, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17311172

RESUMEN

Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control of the crash forces acting on a racing car. NASCAR (National Association for Stock Car Auto Racing, Inc) implemented crash recording in stock car racing in its three national series in 2002. Data from 2925 crashes from 2002 through the 2005 season are summarized in terms of crash severity, crash direction, injury outcome, and protective system performance.


Asunto(s)
Aceleración , Accidentes de Tránsito , Conducción de Automóvil , Modelos Biológicos , Medición de Riesgo/métodos , Cinturones de Seguridad , Fenómenos Biomecánicos/métodos , Simulación por Computador , Humanos , Traumatismo Múltiple/prevención & control , Estimulación Física/instrumentación , Estimulación Física/métodos , Proyectos de Investigación
4.
Stapp Car Crash J ; 48: 331-72, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17230273

RESUMEN

The purpose of this study was to determine the effect of head-neck position on cervical facet stretch during low speed rear end impact. Twelve tests were conducted on four Post Mortem Human Subjects (PMHS) in a generic bucket seat environment. Three head positions, namely Normal (neutral), Zero Clearance between the head and head restraint, and Body Forward positions were tested. A high-speed x-ray system was used to record the motion of cervical vertebrae during these tests. Results demonstrate that: a) The maximum mean facet stretch at head restraint contact occurs at MS4 and MS5 for the Body Forward condition, b) The lower neck flexion moment, prior to head contact, shows a non-linear relationship with facet stretch, and c) "Differential rebound" during rear end impact increases facet stretch.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...