Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38744284

RESUMEN

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.

2.
Brain ; 146(12): 5031-5043, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517035

RESUMEN

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Asunto(s)
Catarata , Epilepsia Generalizada , Epilepsia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Femenino , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Epilepsia/genética , Cerebelo/patología , Trastornos del Neurodesarrollo/genética , Epilepsia Generalizada/patología , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/genética , Atrofia/patología , Catarata/genética , Catarata/patología , Fenotipo , Complejo Mediador/genética
3.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36996813

RESUMEN

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Asunto(s)
Encefalopatías , Moléculas de Adhesión Celular , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Ratones , Alelos , Encefalopatías/genética , Moléculas de Adhesión Celular/genética , Células Endoteliales/metabolismo , Hemorragias Intracraneales/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Uniones Estrechas/genética , Humanos
4.
Mol Genet Genomic Med ; 11(5): e2148, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36785910

RESUMEN

BACKGROUND: As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. METHODS: Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. RESULTS: A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. CONCLUSION: The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future.


Asunto(s)
Encefalopatías , Genoma Humano , Humanos , Secuenciación del Exoma , Estudios Retrospectivos , Secuenciación Completa del Genoma
5.
Eur J Med Genet ; 65(12): 104628, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36182037

RESUMEN

POLA1 encodes a subunit of the DNA polymerase alpha, a key enzyme for the initiation of DNA synthesis. In males, hemizygous hypomorphic variants in POLA1 have been identified as the cause of X-linked pigmentary reticulate disorder (XLPDR) and a novel X-linked neurodevelopmental disorder termed Van Esch-O'Driscoll syndrome (VEODS), while female carriers have been reported to be healthy. Nullisomy for POLA1 was speculated to be lethal due to its crucial function, while the effect of loss of one allele in females remained unknown. Here, we report on a three-generation family harboring a deletion of POLA1 in females showing subfertility as the only phenotype. Our findings show that heterozygous deletions or truncating variants in females with skewed X inactivation do not cause VEODS and support the hypothesis of very early embryonic lethality in males with POLA1 nullisomy.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Discapacidad Intelectual , Masculino , Femenino , Humanos , ADN Polimerasa I/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Genes Ligados a X , Heterocigoto , Discapacidad Intelectual/genética , Fertilidad
6.
Genet Med ; 23(3): 543-554, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33149277

RESUMEN

PURPOSE: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION: Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Convulsiones
7.
Mol Med ; 25(1): 6, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813884

RESUMEN

BACKGROUND: Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. METHODS: To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. RESULTS: The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. CONCLUSIONS: Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Síndromes Epilépticos/genética , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.2/fisiología , Adolescente , Niño , Epilepsia Benigna Neonatal/fisiopatología , Síndromes Epilépticos/fisiopatología , Estudios de Asociación Genética , Células HEK293 , Humanos , Discapacidad Intelectual/fisiopatología , Fenotipo , Adulto Joven
8.
Eur J Hum Genet ; 27(5): 747-759, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30664714

RESUMEN

CYFIP2, encoding the evolutionary highly conserved cytoplasmic FMRP interacting protein 2, has previously been proposed as a candidate gene for intellectual disability and autism because of its important role linking FMRP-dependent transcription regulation and actin polymerization via the WAVE regulatory complex (WRC). Recently, de novo variants affecting the amino acid p.Arg87 of CYFIP2 were reported in four individuals with epileptic encephalopathy. We here report 12 independent patients harboring a variety of de novo variants in CYFIP2 broadening the molecular and clinical spectrum of a novel CYFIP2-related neurodevelopmental disorder. Using trio whole-exome or -genome sequencing, we identified 12 independent patients carrying a total of eight distinct de novo variants in CYFIP2 with a shared phenotype of intellectual disability, seizures, and muscular hypotonia. We detected seven different missense variants, of which two occurred recurrently (p.(Arg87Cys) and p.(Ile664Met)), and a splice donor variant in the last intron for which we showed exon skipping in the transcript. The latter is expected to escape nonsense-mediated mRNA decay resulting in a truncated protein. Despite the large spacing in the primary structure, the variants spatially cluster in the tertiary structure and are all predicted to weaken the interaction with WAVE1 or NCKAP1 of the actin polymerization regulating WRC-complex. Preliminary genotype-phenotype correlation indicates a profound phenotype in p.Arg87 substitutions and a more variable phenotype in other alterations. This study evidenced a variety of de novo variants in CYFIP2 as a novel cause of mostly severe intellectual disability with seizures and muscular hypotonia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Citoplasma/metabolismo , Discapacidad Intelectual/genética , Mutación/genética , Convulsiones/genética , Niño , Preescolar , Facies , Femenino , Humanos , Lactante , Masculino , Modelos Moleculares
9.
Eur J Hum Genet ; 27(3): 408-421, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552426

RESUMEN

Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in ∼42% of cases with causative copy number variants in 6 patients (∼10%) and causative sequence variants in 16 established disease genes in 20 patients (∼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia/genética , Secuenciación del Exoma/métodos , Tasa de Mutación , Adolescente , Adulto , Niño , Preescolar , Epilepsia/diagnóstico , Exoma , Femenino , Genes Recesivos , Humanos , Lactante , Masculino
10.
Brain ; 141(7): 1934-1945, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29868776

RESUMEN

The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.


Asunto(s)
Encefalopatías/genética , Proteínas/genética , Enzimas Ubiquitina-Conjugadoras/genética , Adolescente , Adulto , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encefalopatías/fisiopatología , Niño , Preescolar , Femenino , Células HEK293 , Humanos , Masculino , Microcefalia/genética , Mutación , Linaje , Procesamiento Proteico-Postraduccional , Proteínas/fisiología , Enzimas Activadoras de Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/fisiología
11.
J Med Genet ; 54(12): 809-814, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28391250

RESUMEN

Vitamin-B6-dependent epilepsies are a heterogenous group of treatable disorders due to mutations in several genes (ALDH7A1, PNPO, ALPL or ALDH4A1). In neonatal seizures, defects in ALDH7A1 and PNPO explain a major fraction of cases. Very recently biallelic mutations in PROSC were shown to be a novel cause in five families. We identified four further unrelated patients harbouring a total of six different mutations, including four novel disease mutations. Vitamin B6 plasma profiles on pyridoxine did not enable the differentiation of patients with PROSC mutations. All four patients were normocephalic and had normal cranial imaging. Pyridoxine monotherapy allowed complete seizure control in one, while two patients had occasional febrile or afebrile seizures and one needed additional valproate therapy for photosensitive seizures. Two patients underwent a controlled pyridoxine withdrawal with signs of encephalopathy within a couple of days. Three had favourable outcome with normal intellectual properties at age 12.5, 15.5 and 30 years, respectively, while one child had marked developmental delay at age 27 months. The clinical and electroencephalographic phenotype in patients with PROSC mutations was indistinguishable from ALDH7A1 and PNPO deficiency. We therefore confirm PROSC as a novel gene for vitamin-B6-dependent epilepsy and delineate a non-specific plasma vitamin B6 profile under pyridoxine treatment.


Asunto(s)
Epilepsia/etiología , Epilepsia/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Proteínas/genética , Vitamina B 6/metabolismo , Adolescente , Adulto , Alelos , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Fenotipo , Piridoxina/uso terapéutico , Vitamina B 6/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...