Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 11(18): e2200804, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35899801

RESUMEN

Advanced in vitro tissue chip models can reduce and replace animal experimentation and may eventually support "on-chip" clinical trials. To realize this potential, however, tissue chip platforms must be both mass-produced and reconfigurable to allow for customized design. To address these unmet needs, an extension of the µSiM (microdevice featuring a silicon-nitride membrane) platform is introduced. The modular µSiM (m-µSiM) uses mass-produced components to enable rapid assembly and reconfiguration by laboratories without knowledge of microfabrication. The utility of the m-µSiM is demonstrated by establishing an hiPSC-derived blood-brain barrier (BBB) in bioengineering and nonengineering, brain barriers focused laboratories. In situ and sampling-based assays of small molecule diffusion are developed and validated as a measure of barrier function. BBB properties show excellent interlaboratory agreement and match expectations from literature, validating the m-µSiM as a platform for barrier models and demonstrating successful dissemination of components and protocols. The ability to quickly reconfigure the m-µSiM for coculture and immune cell transmigration studies through addition of accessories and/or quick exchange of components is then demonstrated. Because the development of modified components and accessories is easily achieved, custom designs of the m-µSiM shall be accessible to any laboratory desiring a barrier-style tissue chip platform.


Asunto(s)
Células Madre Pluripotentes Inducidas , Silicio , Animales , Transporte Biológico , Barrera Hematoencefálica , Técnicas de Cocultivo
2.
Nanomedicine ; 21: 102039, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247310

RESUMEN

Staphylococcus aureus osteomyelitis is a devasting disease that often leads to amputation. Recent findings have shown that S. aureus is capable of invading the osteocyte lacuno-canalicular network (OLCN) of cortical bone during chronic osteomyelitis. Normally a 1 µm non-motile cocci, S. aureus deforms smaller than 0.5 µm in the sub-micron channels of the OLCN. Here we present the µSiM-CA (Microfluidic - Silicon Membrane - Canalicular Array) as an in vitro screening platform for the genetic mechanisms of S. aureus invasion. The µSiM-CA platform features an ultrathin silicon membrane with defined pores that mimic the openings of canaliculi. While we anticipated that S. aureus lacking the accessory gene regulator (agr) quorum-sensing system would not be capable of invading the OLCN, we found no differences in propagation compared to wild type in the µSiM-CA. However the µSiM-CA proved predictive as we also found that the agr mutant strain invaded the OLCN of murine tibiae.


Asunto(s)
Osteocitos/microbiología , Osteomielitis/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/patogenicidad , Animales , Hueso Cortical/microbiología , Hueso Cortical/patología , Humanos , Ratones , Osteocitos/patología , Osteomielitis/microbiología , Osteomielitis/patología , Percepción de Quorum/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/genética
3.
ACS Nano ; 10(3): 3102-13, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26900709

RESUMEN

Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests.


Asunto(s)
Teléfono Celular , ADN/análisis , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , ARN/análisis , Bacteriófago lambda/aislamiento & purificación , Colorimetría/instrumentación , Colorantes/análisis , ADN Viral/análisis , Diseño de Equipo , Hepacivirus/aislamiento & purificación , Hepatitis C/virología , Humanos , ARN Viral/análisis , Tamaño de la Muestra
4.
Lab Chip ; 14(24): 4616-28, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25231706

RESUMEN

Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Impresión Tridimensional , Técnicas Analíticas Microfluídicas/métodos
5.
Integr Biol (Camb) ; 6(8): 796-805, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24953827

RESUMEN

Isolating microbes carrying genes of interest from environmental samples is important for applications in biology and medicine. However, this involves the use of genetic assays that often require lysis of microbial cells, which is not compatible with the goal of obtaining live cells for isolation and culture. This paper describes the design, fabrication, biological validation, and underlying physics of a microfluidic SlipChip device that addresses this challenge. The device is composed of two conjoined plates containing 1000 microcompartments, each comprising two juxtaposed wells, one on each opposing plate. Single microbial cells are stochastically confined and subsequently cultured within the microcompartments. Then, we split each microcompartment into two replica droplets, both containing microbial culture, and then controllably separate the two plates while retaining each droplet within each well. We experimentally describe the droplet retention as a function of capillary pressure, viscous pressure, and viscosity of the aqueous phase. Within each pair of replicas, one can be used for genetic analysis, and the other preserves live cells for growth. This microfluidic approach provides a facile way to cultivate anaerobes from complex communities. We validate this method by targeting, isolating, and culturing Bacteroides vulgatus, a core gut anaerobe, from a clinical sample. To date, this methodology has enabled isolation of a novel microbial taxon, representing a new genus. This approach could also be extended to the study of other microorganisms and even mammalian systems, and may enable targeted retrieval of solutions in applications including digital PCR, sequencing, single cell analysis, and protein crystallization.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/métodos , Adhesión Bacteriana , Bacteroides/metabolismo , Infecciones por Bacteroides/microbiología , Secuencia de Bases , Biopsia , Cristalización , Diseño de Equipo , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Presión , Sefarosa/química , Procesos Estocásticos , Temperatura , Viscosidad
6.
Lab Chip ; 14(17): 3225-32, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-24889331

RESUMEN

This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and cellular analysis. Microfluidics will impact digital biology and chemistry and will also benefit from them if it becomes massively distributed.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Bioensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Límite de Detección , Reacción en Cadena de la Polimerasa/métodos
7.
Lab Chip ; 13(22): 4331-42, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24056744

RESUMEN

This paper describes a microfluidic device for dry preservation of biological specimens at room temperature that incorporates chemical stabilization matrices. Long-term stabilization of samples is crucial for remote medical analysis, biosurveillance, and archiving, but the current paradigm for transporting remotely obtained samples relies on the costly "cold chain" to preserve analytes within biospecimens. We propose an alternative approach that involves the use of microfluidics to preserve samples in the dry state with stabilization matrices, developed by others, that are based on self-preservation chemistries found in nature. We describe a SlipChip-based device that allows minimally trained users to preserve samples with the three simple steps of placing a sample at an inlet, closing a lid, and slipping one layer of the device. The device fills automatically, and a pre-loaded desiccant dries the samples. Later, specimens can be rehydrated and recovered for analysis in a laboratory. This device is portable, compact, and self-contained, so it can be transported and operated by untrained users even in limited-resource settings. Features such as dead-end and sequential filling, combined with a "pumping lid" mechanism, enable precise quantification of the original sample's volume while avoiding overfilling. In addition, we demonstrated that the device can be integrated with a plasma filtration module, and we validated device operations and capabilities by testing the stability of purified RNA solutions. These features and the modularity of this platform (which facilitates integration and simplifies operation) would be applicable to other microfluidic devices beyond this application. We envision that as the field of stabilization matrices develops, microfluidic devices will be useful for cost-effectively facilitating remote analysis and biosurveillance while also opening new opportunities for diagnostics, drug development, and other medical fields.


Asunto(s)
Pruebas con Sangre Seca/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Pruebas con Sangre Seca/instrumentación , VIH-1/genética , Humanos , Reacción en Cadena de la Polimerasa , Estabilidad del ARN , ARN Viral/análisis , ARN Viral/aislamiento & purificación
9.
Lab Chip ; 11(3): 508-12, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21113543

RESUMEN

We present a new family of microfluidic chips hot embossed from a commercial fluorinated thermoplastic polymer (Dyneon THV). This material shares most of the properties of fluoro polymers (very low surface energy and resistance to chemicals), but is easier to process due to its relatively low melting point. Finally, as an elastic material it also allows easy world to chip connections. Fluoropolymer films can be imprinted by hot embossing from PDMS molds prepared by soft lithography. Chips are then sealed by an original technique (termed Monolithic-Adhesive-Bonding), using two different grades of fluoropolymer to obtain uniform mechanical, chemical and surface properties. This fabrication process is well adapted to rapid prototyping, but it also has potential for low cost industrial production, since it does not require any curing or etching step. We prepared microfluidic devices with micrometre resolution features, that are optically transparent, and that provide good resistance to pressure (up to 50 kPa). We demonstrated the transport of water droplets in fluorinated oil, and fluorescence detection of DNA within the droplets. No measurable interaction of the droplets with the channels wall was observed, alleviating the need for surface treatment previously necessary for droplet applications in microfluidic chips. These chips can also handle harsh organic solvents. For instance, we demonstrated the formation of chloroform droplets in fluorinated oil, expanding the potential for on chip microchemistry.

10.
Lab Chip ; 8(3): 492-4, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18305871

RESUMEN

A new fabrication process is described allowing rapid prototyping of multilayer microfluidic chips using commercial thiolene optical adhesives. Thiolene monomer liquid is photopolymerized across transparency masks to obtain partially cured patterns supported on thin polyethylene sheets. The patterns are easily laminated and transferred to a substrate due to the elastomeric nature and adhesiveness of partially cured thiolene. The process characteristics are evaluated by realizing several test structures and fluidic chips. As an example of application, the operation of a microfluidic bead array sensor for pH measurements is then described in some detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...