Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(20): 29358-29367, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988809

RESUMEN

The insecticide 14C-chlorpyrifos was found mineralized in a Tunisian soil with repeated exposure to it. From this soil, a bacterial strain was isolated that was able to grow in a minimal salt medium (MSM) supplemented with 25 mg L-1 of chlorpyrifos. It was characterized as Serratia rubidaea strain ABS 10 using morphological and biochemical analyses, as well as 16S rRNA sequencing. In a liquid culture, the S. rubidaea strain ABS 10 was able to dissipate chlorpyrifos almost entirely within 48 h of incubation. Although the S. rubidaea strain ABS 10 was able to grow in an MSM supplemented with chlorpyrifos and dissipate it in a liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, it can be concluded that the dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. It can also be ascribed to other reasons such as the formation of biogenic non-extractable residues. In both non-sterile and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in controls with DT50 of 1.38 and 1.05 days, respectively.


Asunto(s)
Cloropirifos , Biodegradación Ambiental , Cloropirifos/análisis , ARN Ribosómico 16S , Serratia , Suelo
2.
Environ Sci Pollut Res Int ; 29(20): 29236-29243, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34117546

RESUMEN

The effect of wastewater irrigation on the diversity and composition of bacterial communities of soil mesocosms planted with lettuces was studied over an experiment made of five cultivation campaigns. A limited effect of irrigation with either raw or treated wastewater was observed in both α-diversity and ß-diversity of soil bacterial communities. However, the irrigation with wastewater fortified with a complex mixture of fourteen relevant chemicals at 10 µg/L each, including pharmaceutical, biocide, and pesticide active substances, led to a drift in the composition of soil bacterial community. One hundred operational taxonomic units (OTUs) were identified as responsible for changes between treated and fortified wastewater irrigation treatments. Our findings indicate that under a realistic agronomical scenario, the irrigation of vegetables with domestic (treated or raw) wastewater has no effect on soil bacterial communities. Nevertheless, under the worst-case scenario tested here (i.e., wastewater fortified with a mixture of chemicals), non-resilient changes were observed suggesting that continuous/repeated irrigation with wastewater could lead to the accumulation of contaminants in soil and induce changes in bacterial communities with unknown functional consequences.


Asunto(s)
Suelo , Aguas Residuales , Riego Agrícola , Bacterias , Lactuca/microbiología , Suelo/química , Microbiología del Suelo , Aguas Residuales/química
3.
Ecotoxicol Environ Saf ; 223: 112595, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34390984

RESUMEN

The implementation of the new Water Reuse regulation in the European Union brings to the forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater (at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked with 100 µg/L of PPCPs with the highest concentrations detected for clarithromycin, hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial and fungal communities remained stable over the two cultivation campaigns and was not affected by any of the irrigation regimes applied. Similarly, no changes were observed in the abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of commamox no matter the cultivation campaign or the irrigation regime considered. Only a slight increase was detected in clade B of commamox bacteria after the second cultivation campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The irrigation regimes had only a limited effect on the bacterial evenness. However, in response to wastewater irrigation the structure of soil bacterial community significantly changed the relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as responsible for the changes observed within the bacterial communities of soils irrigated with wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil bacterial community.


Asunto(s)
Suelo , Aguas Residuales , Riego Agrícola , Lactuca , Medición de Riesgo , Microbiología del Suelo , Aguas Residuales/análisis
4.
Front Microbiol ; 12: 643719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025605

RESUMEN

Since the early 1920s, the intensive use of antibiotics has led to the contamination of the aquatic environment through diffuse sources and wastewater effluents. The antibiotics commonly found in surface waters include sulfamethoxazole (SMX) and sulfamethazine (SMZ), which belong to the class of sulfonamides, the oldest antibiotic class still in use. These antibiotics have been detected in all European surface waters with median concentrations of around 50 ng L-1 and peak concentrations of up to 4-6 µg L-1. Sulfonamides are known to inhibit bacterial growth by altering microbial production of folic acid, but sub-lethal doses may trigger antimicrobial resistance, with unknown consequences for exposed microbial communities. We investigated the effects of two environmentally relevant concentrations (500 and 5,000 ng L-1) of SMZ and SMX on microbial activity and structure of periphytic biofilms in stream mesocosms for 28 days. Measurement of sulfonamides in the mesocosms revealed contamination levels of about half the nominal concentrations. Exposure to sulfonamides led to slight, transitory effects on heterotrophic functions, but persistent effects were observed on the bacterial structure. After 4 weeks of exposure, sulfonamides also altered the autotrophs in periphyton and particularly the diversity, viability and cell integrity of the diatom community. The higher concentration of SMX tested decreased both diversity (Shannon index) and evenness of the diatom community. Exposure to SMZ reduced diatom species richness and diversity. The mortality of diatoms in biofilms exposed to sulfonamides was twice that in non-exposed biofilms. SMZ also induced an increase in diatom teratologies from 1.1% in non-exposed biofilms up to 3% in biofilms exposed to SMZ. To our knowledge, this is the first report on the teratological effects of sulfonamides on diatoms within periphyton. The increase of both diatom growth rate and mortality suggests a high renewal of diatoms under sulfonamide exposure. In conclusion, our study shows that sulfonamides can alter microbial community structures and diversity at concentrations currently present in the environment, with unknown consequences for the ecosystem. The experimental set-up presented here emphasizes the interest of using natural communities to increase the ecological realism of ecotoxicological studies and to detect potential toxic effects on non-target species.

5.
J Hazard Mater ; 416: 125740, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848793

RESUMEN

One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and ß-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes del Suelo , Ácido 2,4-Diclorofenoxiacético , Agricultura , Biodegradación Ambiental , Microbiología del Suelo
6.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414799

RESUMEN

Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.


Asunto(s)
Transferencia de Gen Horizontal , Genes Bacterianos , Herbicidas/metabolismo , Compuestos de Fenilurea/metabolismo , Sphingomonas/genética , Biodegradación Ambiental , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Sphingomonas/metabolismo
7.
Front Microbiol ; 11: 610298, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505377

RESUMEN

Maize cultivators often use ß-triketone herbicides to prevent the growth of weeds in their fields. These herbicides target the 4-HPPD enzyme of dicotyledons. This enzyme, encoded by the hppd gene, is widespread among all living organisms including soil bacteria, which are considered as "non-target organisms" by the legislation. Within the framework of the pesticide registration process, the ecotoxicological impact of herbicides on soil microorganisms is solely based on carbon and nitrogen mineralization tests. In this study, we used more extensive approaches to assess with a lab-to-field experiment the risk of ß-triketone on the abundance and the diversity of both total and hppd soil bacterial communities. Soil microcosms were exposed, under lab conditions, to 1× or 10× the recommended dose of sulcotrione or its commercial product, Decano®. Whatever the treatment applied, sulcotrione was fully dissipated from soil after 42 days post-treatment. The abundance and the diversity of both the total and the hppd bacterial communities were not affected by the herbicide treatments all along the experiment. Same measurements were led in real agronomical conditions, on three different fields located in the same area cropped with maize: one not exposed to any plant protection products, another one exposed to a series of plant protection products (PPPs) comprising mesotrione, and a last one exposed to different PPPs including mesotrione and tembotrione, two ß-triketones. In this latter, the abundance of the hppd community varied over time. The diversity of the total and the hppd communities evolved over time independently from the treatment received. Only slight but significant transient effects on the abundance of the hppd community in one of the tested soil were observed. Our results showed that tested ß-triketones have no visible impact toward both total and hppd soil bacteria communities.

8.
Front Microbiol ; 10: 1024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134038

RESUMEN

Impact of leptospermone, a ß-triketone bioherbicide, was investigated on the fungal community which supports important soil ecological functions such as decomposition of organic matter and nutrients recycling. This study was done in a microcosm experiment using two French soils, Perpignan (P) and Saint-Jean-de-Fos (SJF), differing in their physicochemical properties and history treatment with synthetic ß-triketones. Soil microcosms were treated with leptospermone at recommended dose and incubated under controlled conditions for 45 days. Untreated microcosms were used as control. Illumina MiSeq sequencing of the internal transcribed spacer region of the fungal rRNA revealed significant changes in fungal community structure and diversity in both soils. Xylariales, Hypocreales, Pleosporales and Capnodiales (Ascomycota phyla) fungi and those belonging to Sebacinales, Cantharellales, Agaricales, Polyporales, Filobasidiales and Tremellales orders (Basidiomycota phyla) were well represented in treated soil microcosms compared to control. Nevertheless, while for the treated SJF a complete recovery of the fungal community was observed at the end of the experiment, this was not the case for the P treated soil, although no more bioherbicide remained. Indeed, the relative abundance of most of the saprophytic fungi were lower in treated soil compared to control microcosms whereas fungi from parasitic fungi included in Spizellomycetales and Pezizales orders increased. To the best of our knowledge, this is the only study assessing the effect of the bioherbicide leptospermone on the composition and diversity of the fungal community in soil. This study showed that leptospermone has an impact on α- and ß-diversity of the fungal community. It underlines the possible interest of microbial endpoints for environmental risk assessment of biopesticide.

9.
Sci Total Environ ; 651(Pt 1): 241-249, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30236841

RESUMEN

The emergence of pesticides of natural origin appears as an environmental-friendly alternative to synthetic pesticides for managing weeds. To verify this assumption, leptospermone, a natural ß-triketone herbicide, and sulcotrione, a synthetic one, were applied to soil microcosms at 0× (control), 1× or 10× recommended field dose. The fate of these two herbicides (i.e. dissipation and formation of transformation products) was monitored to assess the scenario of exposure of soil microorganisms to natural and synthetic herbicides. Ecotoxicological impact of both herbicides was explored by monitoring soil bacterial diversity and activity using next-generation sequencing of 16S rRNA gene amplicons and soil metabolomics. Both leptospermone and sulcotrione fully dissipated over the incubation period. During their dissipation, transformation products of natural and synthetic ß-triketone were detected. Hydroxy-leptospermone was almost completely dissipated by the end of the experiment, while CMBA, the major metabolite of sulcotrione, remained in soil microcosms. After 8 days of exposure, the diversity and structure of the soil bacterial community treated with leptospermone was significantly modified, while less significant changes were observed for sulcotrione. For both herbicides, the diversity of the soil bacterial community was still not completely recovered by the end of the experiment (45 days). The combined use of next-generation sequencing and metabolomic approaches allowed us to assess the ecotoxicological impact of natural and synthetic pesticides on non-target soil microorganisms and to detect potential biomarkers of soil exposure to ß-triketones.


Asunto(s)
Bacterias/efectos de los fármacos , Ciclohexanonas/toxicidad , Herbicidas/toxicidad , Mesilatos/toxicidad , Floroglucinol/análogos & derivados , Microbiología del Suelo , Bacterias/genética , Monitoreo del Ambiente , Metaboloma , Floroglucinol/toxicidad , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Contaminantes del Suelo/toxicidad
10.
Sci Total Environ ; 637-638: 892-906, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29763870

RESUMEN

Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14C-triazole-ring-labeled TBZ was negligible but up to 11% of 14C-penyl-ring-labeled TBZ evolved as 14CO2 within 150 days of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT50 of 202 and 88 days, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20 days after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone.


Asunto(s)
Fungicidas Industriales/análisis , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Triazoles/toxicidad , Estaciones del Año , Suelo , Contaminantes del Suelo/análisis , Triazoles/análisis
11.
Sci Total Environ ; 579: 1111-1119, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27914643

RESUMEN

The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks.


Asunto(s)
Compostaje/métodos , Insecticidas/análisis , Neonicotinoides/análisis , Nitrocompuestos/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Olea , Suelo/química
12.
Sci Total Environ ; 577: 84-93, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27817923

RESUMEN

Pesticide contamination of the environment can result from agricultural practices. Persistence of pesticide residues is a threat to the soil biota including plant roots and beneficial microorganisms, which support an important number of soil ecosystem services. Arbuscular mycorrhizal fungi (AMF) are key symbiotic microorganisms contributing to plant nutrition. In the present study, we assessed whether AMF could indicate eventual side effects of pesticides when directly applied to field soils. We evaluated the ecotoxicological impact of a cocktail of three commonly used agricultural pesticides (fenhexamid, folpel, deltamethrin) on the abundance and composition of the AMF community in vineyard (Montagne de Saint-Emilion) and arable (Martincourt) soils subjected to different agricultural practices. The dissipation of applied pesticides was monitored by multiresidual analyses to determine the scenario of exposure of the AMF community. Diversity analysis before application of the pesticide cocktail showed that the AMF communities of vineyard soils, subjected to mechanical weeding or grass cover, and of the arable soil subjected to intensive agriculture, were dominated by Glomerales. Ribotypes specific to each soil and to each agricultural practice in the same soil were found, with the highest abundance and diversity of AMF being observed in the vineyard soil with a grass-cover. The abundance of the global AMF community (Glomeromycota) and of three taxa of AMF (Funneliformis mosseae, Claroideoglomus etunicatum/C. claroideum) was evaluated after pesticide application. The abundance of Glomeromycota decreased in both soils after pesticide application while the abundance of Claroideoglomus and F. mosseae decreased only in the arable soil. These results show that higher doses of pesticide exposure did not affect the global abundance, but altered the composition, of the AMF community. Resilience of the AMF community composition was observed only in the vineyard soil, where F. mosseae was the most tolerant taxon to pesticide exposure.


Asunto(s)
Glomeromycota/crecimiento & desarrollo , Plaguicidas/análisis , Microbiología del Suelo , Suelo/química , Amidas , Francia , Glomeromycota/clasificación , Micorrizas/clasificación , Micorrizas/crecimiento & desarrollo , Nitrilos , Piretrinas
13.
J Hazard Mater ; 304: 379-87, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26590874

RESUMEN

Soil organic amendment affects biotic and abiotic processes that control the fate of pesticides, but the treatment history of the soil is also relevant. These processes were assessed in a multidisciplinary study with the aim of optimizing pesticide mitigation in soils. Soil microcosms pre-treated (E2) or not with diuron (E1) were amended with either winery (W) or olive waste (O) vermicomposts. Herbicide dissipation followed a double first-order model in E1 microcosms, but a single first-order model in E2. Also, diuron persistence was longer in E1 than in E2 (E1-DT50>200 day(-1), E2-DT50<16 day(-1)). The genetic structure of the bacterial community was modified by both diuron exposure and amendment. O-vermicompost increased enzymatic activities in both experiments, but diuron-degrading genetic potential (puhB) was quantified only in E2 microcosms in accordance with reduced diuron persistence. Therefore, O-vermicompost addition favoured the proliferation of diuron degraders, increasing the soil diuron-depuration capability.


Asunto(s)
Diurona , Plaguicidas , Microbiología del Suelo , Contaminantes del Suelo , Adsorción , Proteínas Bacterianas/genética , Diurona/química , Diurona/metabolismo , Industria de Alimentos , Genes Bacterianos/genética , Residuos Industriales , Aceite de Oliva , Oxidorreductasas/metabolismo , Plaguicidas/química , Plaguicidas/metabolismo , ARN Ribosómico 16S/genética , Suelo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Ureasa/metabolismo , Vino
14.
Environ Sci Pollut Res Int ; 23(5): 4185-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26025175

RESUMEN

The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000 ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32 days): (i) the fate of chlordecone by measuring (14)C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and (14)C-compounds mineralizing activity). Mineralization of (14)C-chlordecone was inferior below 1 % of initial (14)C-activity. Less than 2 % of (14)C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75 % of initial (14)C-activity). Only 23 % of the remaining (14)C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (ß-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of (14)C-sodium acetate and (14)C-2,4-D was insensitive to chlordecone exposure in silty loam soil. However, mineralization of (14)C-sodium acetate was significantly reduced in soil microcosms of sandy loam soil exposed to chlordecone as compared to the control (D0). These data show that chlordecone exposure induced changes in microbial community taxonomic composition and function in one of the two soils, suggesting microbial toxicity of this organochlorine.


Asunto(s)
Clordecona/toxicidad , Insecticidas/toxicidad , Consorcios Microbianos/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Ácido 2,4-Diclorofenoxiacético/química , Bacterias , Radioisótopos de Carbono , Clordecona/análisis , Ecotoxicología , Insecticidas/análisis , Musa , Acetato de Sodio , Suelo/química , Contaminantes del Suelo/análisis , Indias Occidentales
15.
Environ Sci Pollut Res Int ; 21(4): 2977-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24170505

RESUMEN

The effect of phenanthrene on the bacterial community was studied on permanent grassland soil historically presenting low contamination (i.e. less than 1 mg kg(-1)) by polycyclic aromatic hydrocarbons (PAHs). Microcosms of soil were spiked with phenanthrene at 300 mg kg(-1). After 30 days of incubation, the phenanthrene concentration decreased rapidly until its total dissipation within 90 days. During this incubation period, significant changes of the total bacterial community diversity were observed, as assessed by automated-ribosomal intergenic spacer analysis fingerprinting. In order to get a deeper view of the effect of phenanthrene on the bacterial community, the abundances of ten phyla and classes (Actinobacteria, Acidobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Verrucomicrobiales, Gemmatimonadetes, and Planctomycetes) were monitored by quantitative polymerase chain reaction performed on soil DNA extracts. Interestingly, abundances of some bacterial taxa significantly changed as compared with controls. Moreover, among these bacterial groups impacted by phenanthrene spiking, some of them presented the potential of phenanthrene degradation, as assessed by PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene detection. However, neither the abundance nor the diversity of the PAH-RHDα genes was significantly impacted by phenanthrene spiking, highlighting the low impact of this organic contaminant on the functional bacterial diversities in grassland soil.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Fenantrenos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , Dioxigenasas/metabolismo , Fenantrenos/química , Poaceae , ARN Ribosómico 16S/genética , Contaminantes del Suelo/química
16.
Appl Microbiol Biotechnol ; 97(4): 1661-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22854895

RESUMEN

A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-¹4C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sediment communities, mineralization potential did not depend solely on the quantity of puhB copies, underlining the need to assess gene expression. In the sediment samples, both puhB copy numbers and mineralization capacities were highly conditioned by whether or not diuron-treated soil was added. This points to transfers of degradative potential from soils to sediments. No puhA gene was detected in soil and sediment DNA extracts. Moreover, some sediments exhibited high diuron mineralization potential even though puhB genes were not detected, suggesting the existence of alternative diuron degradation pathways.


Asunto(s)
Amidohidrolasas/genética , Bacterias/enzimología , Proteínas Bacterianas/genética , Diurona/metabolismo , Herbicidas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Contaminantes del Suelo/metabolismo , Amidohidrolasas/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Datos de Secuencia Molecular , Alineación de Secuencia , Microbiología del Suelo
17.
Pest Manag Sci ; 65(9): 1021-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19479783

RESUMEN

BACKGROUND: The 2,4-D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4-D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4-D were able rapidly to mineralise this herbicide. The half-life of 2,4-D ranged from 8 to 30 days, and maximum mineralisation of (14)C-2,4-D ranged from 57 to 71%. Extractable (14)C-2,4-D and (14)C-bound residues accounted for less than 1 and 15% respectively of the (14)C-2,4-D initially added. The highest amounts of (14)C-2,4-D bound residues were recorded in the soil with the lowest 2,4-D-mineralising ability. Although all three soils were able to mineralise 2,4-D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4-D-mineralising ability. 2,4-D-mineralising ability was positively correlated with soil moisture content. Negligible 2,4-D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4-D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Bacterias/metabolismo , Herbicidas/metabolismo , Microbiología del Suelo , Ácido 2,4-Diclorofenoxiacético/química , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Semivida , Herbicidas/química , Humedad , Región Mediterránea , Suelo/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...