Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 317: 23-33, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31733295

RESUMEN

Recent pre-clinical studies have demonstrated the potential of combining chemotherapy and sonodynamic therapy for the treatment of pancreatic cancer. Oxygen-loaded magnetic microbubbles have been explored as a targeted delivery vehicle for this application. Despite preliminary positive results, a previous study identified a significant practical challenge regarding the co-alignment of the magnetic and ultrasound fields. The aim of this study was to determine whether this challenge could be addressed through the use of a magnetic-acoustic device (MAD) combining a magnetic array and ultrasound transducer in a single unit, to simultaneously concentrate and activate the microbubbles at the target site. in vitro experiments were performed in tissue phantoms and followed by in vivo treatment of xenograft pancreatic cancer (BxPC-3) tumours in a murine model. In vitro, a 1.4-fold (p < .01) increase in the deposition of a model therapeutic payload within the phantom was achieved using the MAD compared to separate magnetic and ultrasound devices. In vivo, tumours treated with the MAD had a 9% smaller mean volume 8 days after treatment, while tumours treated with separate devices or microbubbles alone were respectively 45% and 112% larger. This substantial and sustained decrease in tumour volume suggests that the proposed drug delivery approach has the potential to be an effective neoadjuvant therapy for pancreatic cancer patients.


Asunto(s)
Microburbujas , Neoplasias Pancreáticas , Acústica , Animales , Sistemas de Liberación de Medicamentos , Humanos , Fenómenos Magnéticos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico
2.
ACS Appl Mater Interfaces ; 11(22): 19913-19919, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31074968

RESUMEN

The intense conditions generated in the core of a collapsing bubble have been the subject of intense scrutiny from fields as diverse as marine biology and nuclear fusion. In particular, the phenomenon of sonoluminescence, whereby a collapsing bubble emits light, has received significant attention. Sonoluminescence has been associated predominantly with millimeter-sized bubbles excited at low frequencies and under conditions far removed from those associated with the use of ultrasound in medicine. In this study, however, we demonstrate that sonoluminescence is produced under medically relevant exposure conditions by microbubbles commonly used as contrast agents for ultrasound imaging. This provides a mechanistic explanation for the somewhat controversial reports of "sonodynamic" therapy, in which light-sensitive drugs have been shown to be activated by ultrasound-induced cavitation. To illustrate this, we demonstrate the activation of a photodynamic therapy agent using microbubbles and ultrasound. Since ultrasound can be accurately focused at large tissue depths, this opens up the potential for generating light at locations that cannot be reached by external sources. This could be exploited both for diagnostic and therapeutic applications, significantly increasing the range of applications that are currently restricted by the limited penetration of light in the tissue.


Asunto(s)
Microburbujas , Ultrasonido , Medios de Contraste/química , Especies Reactivas de Oxígeno/metabolismo
3.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30485112

RESUMEN

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

4.
ACS Appl Mater Interfaces ; 11(2): 1829-1840, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30574777

RESUMEN

The advancement of ultrasound-mediated therapy has stimulated the development of drug-loaded microbubble agents that can be targeted to a region of interest through an applied magnetic field prior to ultrasound activation. However, the need to incorporate therapeutic molecules while optimizing the responsiveness to both magnetic and acoustic fields and maintaining adequate stability poses a considerable challenge for microbubble synthesis. The aim of this study was to evaluate three different methods for incorporating iron oxide nanoparticles (IONPs) into phospholipid-coated microbubbles using (1) hydrophobic IONPs within an oil layer below the microbubble shell, (2) phospholipid-stabilized IONPs within the shell, or (3) hydrophilic IONPs noncovalently bound to the surface of the microbubble. All microbubbles exhibited similar acoustic response at both 1 and 7 MHz. The half-life of the microbubbles was more than doubled by the addition of IONPs by using both surface and phospholipid-mediated loading methods, provided the lipid used to coat the IONPs was the same as that constituting the microbubble shell. The highest loading of IONPs per microbubble was also achieved with the surface loading method, and these microbubbles were the most responsive to an applied magnetic field, showing a 3-fold increase in the number of retained microbubbles compared to other groups. For the purpose of drug delivery, surface loading of IONPs could restrict the attachment of hydrophilic drugs to the microbubble shell, but hydrophobic drugs could still be incorporated. In contrast, although the incorporation of phospholipid IONPs produced more weakly magnetic microbubbles, it would not interfere with hydrophilic drug loading on the surface of the microbubble.

5.
J Control Release ; 279: 8-16, 2018 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-29653222

RESUMEN

Pancreatic cancer remains one of the most lethal forms of cancer with a 10-year survival of <1%. With little improvement in survival rates observed in the past 40 years, there is a significant need for new treatments or more effective strategies to deliver existing treatments. The antimetabolite gemcitabine (Gem) is the most widely used form of chemotherapy for pancreatic cancer treatment, but is known to produce significant side effects when administered systemically. We have previously demonstrated the benefit of combined chemo-sonodynamic therapy (SDT), delivered using oxygen carrying microbubbles (O2MB), as a targeted treatment for pancreatic cancer in a murine model of the disease. In this manuscript, we report the preparation of a biotin functionalised Gem ligand for attachment to O2MBs (O2MB-Gem). We demonstrate the effectiveness of chemo-sonodynamic therapy following ultrasound-targeted-microbubble-destruction (UTMD) of the O2MB-Gem and a Rose Bengal loaded O2MB (O2MB-RB) as a targeted treatment for pancreatic cancer. Specifically, UTMD using the O2MB-Gem and O2MB-RB conjugates reduced the viability of MIA PaCa-2, PANC-1, BxPC3 and T110299 pancreatic cancer cells by >60% (p < 0.001) and provided significant tumour growth delay (>80%, p < 0.001) compared to untreated animals when human xenograft MIA PaCa-2 tumours were treated in SCID mice. The toxicity of the O2MB-Gem conjugate was also determined in healthy non-tumour bearing MF1 mice and revealed no evidence of renal or hepatic damage. Therefore, the results presented in this manuscript suggest that chemo-sonodynamic therapy using the O2MB-Gem and O2MB-RB conjugates, is potentially an effective targeted and safe treatment modality for pancreatic cancer.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Desoxicitidina/análogos & derivados , Microburbujas , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/toxicidad , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Masculino , Ratones SCID , Neoplasias Pancreáticas/patología , Rosa Bengala/química , Rosa Bengala/toxicidad , Terapia por Ultrasonido/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
6.
Drug Deliv Transl Res ; 8(2): 342-356, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28299722

RESUMEN

Microbubbles are currently in clinical use as ultrasound contrast agents and under active investigation as mediators of ultrasound therapy. To improve the theranostic potential of microbubbles, nanoparticles can be attached to the bubble shell for imaging, targeting and/or enhancement of acoustic response. Existing methods for fabricating particle-loaded bubbles, however, require the use of polymers, oil layers or chemical reactions for particle incorporation; embed/attach the particles that can reduce echogenicity; impair biocompatibility; and/or involve multiple processing steps. Here, we describe a simple method to embed nanoparticles in a phospholipid-coated microbubble formulation that overcomes these limitations. Magnetic nanoparticles are used to demonstrate the method with a range of different microbubble formulations. The size distribution and yield of microbubbles are shown to be unaffected by the addition of the particles. We further show that the microbubbles can be retained against flow using a permanent magnet, can be visualised by both ultrasound and magnetic resonance imaging (MRI) and can be used to transfect SH-SY5Y cells with fluorescent small interfering RNA under the application of a magnetic field and ultrasound field.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas de Magnetita/química , Microburbujas , Línea Celular Tumoral , Medios de Contraste , Composición de Medicamentos , Colorantes Fluorescentes/administración & dosificación , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/ultraestructura , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Tamaño de la Partícula , Fosfolípidos/administración & dosificación , Fosfolípidos/química , ARN Interferente Pequeño/administración & dosificación , Ultrasonografía
7.
J Control Release ; 262: 192-200, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28764995

RESUMEN

Magnetically responsive microbubbles (MagMBs), consisting of an oxygen gas core and a phospholipid coating functionalised with Rose Bengal (RB) and/or 5-fluorouracil (5-FU), were assessed as a delivery vehicle for the targeted treatment of pancreatic cancer using combined antimetabolite and sonodynamic therapy (SDT). MagMBs delivering the combined 5-FU/SDT treatment produced a reduction in cell viability of over 50% when tested against a panel of four pancreatic cancer cell lines in vitro. Intravenous administration of the MagMBs to mice bearing orthotopic human xenograft BxPC-3 tumours yielded a 48.3% reduction in tumour volume relative to an untreated control group (p<0.05) when the tumour was exposed to both external magnetic and ultrasound fields during administration of the MagMBs. In contrast, application of an external ultrasound field alone resulted in a 27% reduction in tumour volume. In addition, activated caspase and BAX protein levels were both observed to be significantly elevated in tumours harvested from animals treated with the MagMBs in the presence of magnetic and ultrasonic fields when compared to expression of those proteins in tumours from either the control or ultrasound field only groups (p<0.05). These results suggest MagMBs have considerable potential as a platform to enable the targeted delivery of combined sonodynamic/antimetabolite therapy in pancreatic cancer.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Fluorouracilo/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Microburbujas , Sonicación , Animales , Antimetabolitos Antineoplásicos/química , Avidina/administración & dosificación , Avidina/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Compuestos Férricos/administración & dosificación , Compuestos Férricos/química , Fluorouracilo/química , Humanos , Fenómenos Magnéticos , Nanopartículas del Metal/química , Ratones SCID , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Rosa Bengala/administración & dosificación , Rosa Bengala/química , Carga Tumoral/efectos de los fármacos
8.
Biotechnol Prog ; 32(2): 440-6, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26587686

RESUMEN

The use of transplanted adipose tissue to repair crucial defects is clinically interesting for surgical reconstruction. Terminally differentiated adipocytes are utilized to promote the healthy regeneration of defective tissue. Use of differentiated mesenchymal stem cells, capable of differentiation into adipocytes, is advantageous because of their regenerative properties. Conventionally, the differentiation of hMSCs toward adipocytes occurs through chemical stimulation. We designed a microfluidic system, consisting of plastic tubing and a syringe pump, to create an environment of shear to accelerate this differentiation process. This system employed a flow rate equivalent to the accelerated flow rates found within the arterial system in order to promote and activate intracellular and extracellular proteins associated with the adipogenic lineage. Confirmation of sustained viability following shear exposure was obtained using a fluorescent live-dead assay. Visualization of intracellular lipid accumulation was achieved via Oil Red O staining. When placed into culture, shear stimulated hMSCs were further induced toward brown adipose tissue, as evidenced by a greater quantity of lipid triglycerides, relative to unstimulated hMSCs. qRT-PCR analysis validated the phenotypic changes observed when the hMSCs were later cultured in adipogenic differentiation media. Additionally, increased fold change for adipogenic markers such as LPL1, CFL1, and SSP1 were observed as a result of shear stimulation. The significance of this work lies in the demonstration that transient fluid shear exposure of hMSCs in suspension can influence differentiation into adipocytes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:440-446, 2016.


Asunto(s)
Adipocitos/citología , Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Humanos , Técnicas Analíticas Microfluídicas
9.
Connect Tissue Res ; 57(6): 466-475, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26713781

RESUMEN

Human mesenchymal stem cells (hMSCs) are derived from bone marrow and have the ability to differentiate into cartilage and other mesenchymal cell types found throughout the body. Traditionally, the differentiation of hMSCs toward chondrocytes occurs through a combination of pelleted static cell culture and chemical stimuli. As an alternative to these protocols, we developed an in vitro flow through microfluidic method to induce the differentiation of hMSCs into chondrocytes. Suspensions of unattached hMSCs were exposed to a constant shear flow over a period of 20 minutes, which promoted phenotypic and gene expression changes toward the chondrogenic lineage. These internal and external changes of chondrogenic differentiation were then observed over 3 weeks later in culture, as confirmed through fluorescent immunocytochemical staining and real-time quantitative reverse transcriptase polymerase chain reaction. The increased concentration of Type II collagen on the surface of shear stimulated hMSCs with the upregulation of MAPK1 and SOX9 demonstrated the capabilities of our approach to induce sustained differentiation. In conclusion, our shear stimulation method, in combination with chemical stimuli, illustrates enhanced differentiation of hMSCs toward the chondrogenic lineage.


Asunto(s)
Células Madre Adultas/citología , Diferenciación Celular , Linaje de la Célula , Condrogénesis , Células Madre Mesenquimatosas/citología , Suspensiones/farmacología , Adulto , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Fluorescencia , Perfilación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...