Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 13(5): 3, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696180

RESUMEN

Purpose: The biosynthetic Symatix membrane (SM) was developed to replace fresh human amniotic membrane (hAM) in ocular surgical applications. The purpose of this study was to test the biocompatibility of the SM with human limbus-derived epithelial cells with regard to their physical and biological properties. Methods: Different physical properties of SM were tested ex vivo by simulation on human corneas. In vitro, primary limbal epithelial cells from limbal explants were used to test biological properties such as cell migration, proliferation, metabolic activity, and limbal epithelial cell markers on the SM, hAM, and freeze-dried amniotic membrane (FDAM). Results: The surgical handleability of the SM was equivalent to that of the hAM. Ultrastructural and histological studies demonstrated that epithelial cells on the SM had the typical tightly apposed, polygonal, corneal epithelial cell morphology. The epithelial cells were well stratified on the SM, unlike on the hAM and FDAM. Rapid wound healing occurred on the SM within 3 days. Immunofluorescence studies showed positive expression of CK-19, Col-1, laminin, ZO-1, FN, and p-63 on the SM, plastic, and FDAM compared to positive expression of ZO-1, Col-1, laminin, FN, and p63 and negative expression of CK-19 in the hAM. Conclusions: These results indicate that the SM is a better substrate for limbal epithelial cell migration, proliferation, and tight junction formation. Altogether, the SM can provide a suitable alternative to the hAM for surgical application in sight-restoring operations. Translational Relevance: The hAM, currently widely used in ocular surface surgery, has numerous variations and limitations. The biocompatibility of corneal epithelial cells with the SM demonstrated in this study suggests that it can be a viable substitute for the hAM.


Asunto(s)
Amnios , Movimiento Celular , Proliferación Celular , Humanos , Amnios/metabolismo , Células Cultivadas , Limbo de la Córnea/metabolismo , Limbo de la Córnea/citología , Epitelio Corneal/metabolismo , Epitelio Corneal/citología , Cicatrización de Heridas/fisiología , Células Epiteliales/metabolismo , Procedimientos Quirúrgicos Oftalmológicos/métodos , Laminina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
2.
ACS Biomater Sci Eng ; 9(3): 1472-1485, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36848250

RESUMEN

The use of nerve guidance conduits (NGCs) to treat peripheral nerve injuries is a favorable approach to the current "gold standard" of autografting. However, as simple hollow tubes, they lack specific topographical and mechanical guidance cues present in nerve grafts and therefore are not suitable for treating large gap injuries (30-50 mm). The incorporation of intraluminal guidance scaffolds, such as aligned fibers, has been shown to increase neuronal cell neurite outgrowth and Schwann cell migration distances. A novel blend of PHAs, P(3HO)/P(3HB) (50:50), was investigated for its potential as an intraluminal aligned fiber guidance scaffold. Aligned fibers of 5 and 8 µm diameter were manufactured by electrospinning and characterized using SEM. Fibers were investigated for their effect on neuronal cell differentiation, Schwann cell phenotype, and cell viability in vitro. Overall, P(3HO)/P(3HB) (50:50) fibers supported higher neuronal and Schwann cell adhesion compared to PCL fibers. The 5 µm PHA blend fibers also supported significantly higher DRG neurite outgrowth and Schwann cell migration distance using a 3D ex vivo nerve injury model.


Asunto(s)
Traumatismos de los Nervios Periféricos , Traumatismos de los Nervios Periféricos/terapia , Células de Schwann/citología , Adhesión Celular , Polihidroxialcanoatos/química , Electrones , Animales , Ratones , Células Cultivadas , Movimiento Celular
3.
Arch Toxicol ; 92(12): 3487-3503, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30298209

RESUMEN

Genomic drift affects the functional properties of cell lines, and the reproducibility of data from in vitro studies. While chromosomal aberrations and mutations in single pivotal genes are well explored, little is known about effects of minor, possibly pleiotropic, genome changes. We addressed this question for the human dopaminergic neuronal precursor cell line LUHMES by comparing two subpopulations (SP) maintained either at the American-Type-Culture-Collection (ATCC) or by the original provider (UKN). Drastic differences in susceptibility towards the specific dopaminergic toxicant 1-methyl-4-phenylpyridinium (MPP+) were observed. Whole-genome sequencing was performed to identify underlying genetic differences. While both SP had normal chromosome structures, they displayed about 70 differences on the level of amino acid changing events. Some of these differences were confirmed biochemically, but none offered a direct explanation for the altered toxicant sensitivity pattern. As second approach, markers known to be relevant for the intended use of the cells were specifically tested. The "ATCC" cells rapidly down-regulated the dopamine-transporter and tyrosine-hydroxylase after differentiation, while "UKN" cells maintained functional levels. As the respective genes were not altered themselves, we conclude that polygenic complex upstream changes can have drastic effects on biochemical features and toxicological responses of relatively similar SP of cells.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Neuronas Dopaminérgicas/metabolismo , Flujo Genético , Secuenciación Completa del Genoma/métodos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Regulación hacia Abajo/genética , Humanos , Reproducibilidad de los Resultados , Tirosina 3-Monooxigenasa/genética
4.
Int J Bioprint ; 4(1): 123, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33102907

RESUMEN

Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternatives to autografts, but failed to bridge gaps exceeding 3 cm in humans. Internal NGC guidance cues like microfibres are believed to enhance hollow NGCs by giving additional physical support for directed regeneration of Schwann cells and axons. In this study, we report a new 3D in vitro model that allows the evaluation of different intraluminal fibre scaffolds inside a complete NGC. The performance of electrospun polycaprolactone (PCL) microfibres inside 5 mm long polyethylene glycol (PEG) conduits were investigated in neuronal cell and dorsal root ganglion (DRG) cultures in vitro. Z-stack confocal microscopy revealed the aligned orientation of neuronal cells along the fibres throughout the whole NGC length and depth. The number of living cells in the centre of the scaffold was not significantly different to the tissue culture plastic (TCP) control. For ex vivo analysis, DRGs were placed on top of fibre-filled NGCs to simulate the proximal nerve stump. In 21 days of culture, Schwann cells and axons infiltrated the conduits along the microfibres with 2.2 ± 0.37 mm and 2.1 ± 0.33 mm, respectively. We conclude that this in vitro model can help define internal NGC scaffolds in the future by comparing different fibre materials, composites and dimensions in one setup prior to animal testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...