Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(4): 1397-1415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38229005

RESUMEN

Jasmonic acid-isoleucine (JA-Ile) is a plant defence hormone whose cellular levels are elevated upon herbivory and regulate defence signalling. Despite their pivotal role, our understanding of the rapid cellular perception of bioactive JA-Ile is limited. This study identifies cell type-specific JA-Ile-induced Ca2+ signal and its role in self-amplification and plant elicitor peptide receptor (PEPR)-mediated signalling. Using the Ca2+ reporter, R-GECO1 in Arabidopsis, we have characterized a monophasic and sustained JA-Ile-dependent Ca2+ signature in leaf epidermal cells. The rapid Ca2+ signal is independent of positive feedback by the JA-Ile receptor, COI1 and the transporter, JAT1. Microarray analysis identified up-regulation of receptors, PEPR1 and PEPR2 upon JA-Ile treatment. The pepr1 pepr2 double mutant in R-GECO1 background exhibits impaired external JA-Ile induced Ca2+ cyt elevation and impacts the canonical JA-Ile responsive genes. JA responsive transcription factor, MYC2 binds to the G-Box motif of PEPR1 and PEPR2 promoter and activates their expression upon JA-Ile treatment and in myc2 mutant, this is reduced. External JA-Ile amplifies AtPep-PEPR pathway by increasing the AtPep precursor, PROPEP expression. Our work shows a previously unknown non-canonical PEPR-JA-Ile-Ca2+ -MYC2 signalling module through which plants sense JA-Ile rapidly to amplify both AtPep-PEPR and jasmonate signalling in undamaged cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Isoleucina/análogos & derivados , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Isoleucina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Dev Cell ; 57(17): 2081-2094.e7, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007523

RESUMEN

Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Estrés Salino , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
3.
Front Microbiol ; 13: 909289, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847102

RESUMEN

The present study focuses on the stress response of a filamentous, AT-rich, heterocystous cyanobacterium Mastigocladus laminosus UU774, isolated from a hot spring, Taptapani, located in the eastern part of India. The genome of UU774 contains an indispensable fragment, scaffold_38, of unknown origin that is implicated during severe nitrogen and nutrition stress. Prolonged exposure to nitrogen compounds during starvation has profound adverse effects on UU774, leading to loss of mobility, loss of ability to fight pathogens, reduced cell division, decreased nitrogen-fixing ability, reduced ability to form biofilms, reduced photosynthetic and light-sensing ability, and reduced production of secreted effectors and chromosomal toxin genes, among others. Among genes showing extreme downregulation when grown in a medium supplemented with nitrogen with the fold change > 5 are transcriptional regulator gene WalR, carbonic anhydrases, RNA Polymerase Sigma F factor, fimbrial protein, and twitching mobility protein. The reduced expression of key enzymes involved in the uptake of phosphate and enzymes protecting oxygen-sensitive nitrogenases is significant during the presence of nitrogen. UU774 is presumed to withstand heat by overexpressing peptidases that may be degrading abnormally folded proteins produced during heat. The absence of a key gene responsible for heterocyst pattern formation, patS, and an aberrant hetN without a functional motif probably lead to the formation of a chaotic heterocyst pattern in UU774. We suggest that UU774 has diverged from Fischerella sp. PCC 9339, another hot spring species isolated in the United States.

4.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142885

RESUMEN

Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Señalización del Calcio , Regulación de la Expresión Génica de las Plantas , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/inmunología , Factores de Transcripción/genética
5.
PLoS Biol ; 17(7): e3000085, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31295257

RESUMEN

Signaling cross talks between auxin, a regulator of plant development, and Ca2+, a universal second messenger, have been proposed to modulate developmental plasticity in plants. However, the underlying molecular mechanisms are largely unknown. Here, we report that in Arabidopsis roots, auxin elicits specific Ca2+ signaling patterns that spatially coincide with the expression pattern of auxin-regulated genes. We have identified the single EF-hand Ca2+-binding protein Ca2+-dependent modulator of ICR1 (CMI1) as an interactor of the Rho of plants (ROP) effector interactor of constitutively active ROP (ICR1). CMI1 expression is directly up-regulated by auxin, whereas the loss of function of CMI1 associates with the repression of auxin-induced Ca2+ increases in the lateral root cap and vasculature, indicating that CMI1 represses early auxin responses. In agreement, cmi1 mutants display an increased auxin response including shorter primary roots, longer root hairs, longer hypocotyls, and altered lateral root formation. Binding to ICR1 affects subcellular localization of CMI1 and its function. The interaction between CMI1 and ICR1 is Ca2+-dependent and involves a conserved hydrophobic pocket in CMI1 and calmodulin binding-like domain in ICR1. Remarkably, CMI1 is monomeric in solution and in vitro changes its secondary structure at cellular resting Ca2+ concentrations ranging between 10-9 and 10-8 M. Hence, CMI1 is a Ca2+-dependent transducer of auxin-regulated gene expression, which can function in a cell-specific fashion at steady-state as well as at elevated cellular Ca2+ levels to regulate auxin responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Proteínas Portadoras/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Unión Proteica , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
6.
Plant Cell ; 30(11): 2704-2719, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377237

RESUMEN

Ca2+ play a key role in cell signaling across organisms. The question of how a simple ion can mediate specific outcomes has spurred research into the role of Ca2+ signatures and their encoding and decoding machinery. Such studies have frequently focused on Ca2+ alone and our understanding of how Ca2+ signaling is integrated with other responses is poor. Using in vivo imaging with different genetically encoded fluorescent sensors in Arabidopsis (Arabidopsis thaliana) cells, we show that Ca2+ transients do not occur in isolation but are accompanied by pH changes in the cytosol. We estimate the degree of cytosolic acidification at up to 0.25 pH units in response to external ATP in seedling root tips. We validated this pH-Ca2+ link for distinct stimuli. Our data suggest that the association with pH may be a general feature of Ca2+ transients that depends on the transient characteristics and the intracellular compartment. These findings suggest a fundamental link between Ca2+ and pH dynamics in plant cells, generalizing previous observations of their association in growing pollen tubes and root hairs. Ca2+ signatures act in concert with pH signatures, possibly providing an additional layer of cellular signal transduction to tailor signal specificity.


Asunto(s)
Calcio/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas/metabolismo , Concentración de Iones de Hidrógeno , Plantones/metabolismo
7.
Methods Mol Biol ; 1743: 125-141, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29332292

RESUMEN

Plants react to the attack of pathogen microorganisms by mounting appropriate and efficient downstream defense responses often involving a form of localized cell death called hypersensitive response (HR).Here we describe an innovative and noninvasive protocol based on in vivo bioimaging technique coupled with utilization of genetically encoded fluorescent sensors that allows to monitor and analyze intracellular calcium (Ca2+) dynamics and changes of the glutathione redox status taking place in plant organs during plant interaction with the HR-inducing bacteria Pseudomonas syringae (PstAvrB).


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Calcio/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Pseudomonas syringae/fisiología , Expresión Génica , Genes Reporteros , Microscopía Fluorescente , Imagen Molecular , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados
9.
Plant Physiol ; 173(2): 1355-1370, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28031475

RESUMEN

Over the recent years, several proteins that make up the mitochondrial calcium uniporter complex (MCUC) mediating Ca2+uptake into the mitochondrial matrix have been identified in mammals, including the channel-forming protein MCU. Although six MCU gene homologs are conserved in the model plant Arabidopsis (Arabidopsis thaliana) in which mitochondria can accumulate Ca2+, a functional characterization of plant MCU homologs has been lacking. Using electrophysiology, we show that one isoform, AtMCU1, gives rise to a Ca2+-permeable channel activity that can be observed even in the absence of accessory proteins implicated in the formation of the active mammalian channel. Furthermore, we provide direct evidence that AtMCU1 activity is sensitive to the mitochondrial calcium uniporter inhibitors Ruthenium Red and Gd3+, as well as to the Arabidopsis protein MICU, a regulatory MCUC component. AtMCU1 is prevalently expressed in roots, localizes to mitochondria, and its absence causes mild changes in Ca2+ dynamics as assessed by in vivo measurements in Arabidopsis root tips. Plants either lacking or overexpressing AtMCU1 display root mitochondria with altered ultrastructure and show shorter primary roots under restrictive growth conditions. In summary, our work adds evolutionary depth to the investigation of mitochondrial Ca2+ transport, indicates that AtMCU1, together with MICU as a regulator, represents a functional configuration of the plant mitochondrial Ca2+ uptake complex with differences to the mammalian MCUC, and identifies a new player of the intracellular Ca2+ regulation network in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mutación , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
10.
New Phytol ; 213(2): 739-750, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27579668

RESUMEN

In plants, potassium (K+ ) homeostasis is tightly regulated and established against a concentration gradient to the environment. Despite the identification of Ca2+ -regulated kinases as modulators of K+ channels, the immediate signaling and adaptation mechanisms of plants to low-K+ conditions are only partially understood. To assess the occurrence and role of Ca2+ signals in Arabidopsis thaliana roots, we employed ratiometric analyses of Ca2+ dynamics in plants expressing the Ca2+ reporter YC3.6 in combination with patch-clamp analyses of root cells and two-electrode voltage clamp (TEVC) analyses in Xenopus laevis oocytes. K+ deficiency triggers two successive and distinct Ca2+ signals in roots exhibiting spatial and temporal specificity. A transient primary Ca2+ signature arose within 1 min in the postmeristematic stelar tissue of the elongation zone, while a secondary Ca2+ response occurred after several hours as sustained Ca2+ elevation in defined tissues of the elongation and root hair differentiation zones. Patch-clamp and TEVC analyses revealed Ca2+ dependence of the activation of the K+ channel AKT1 by the CBL1-CIPK23 Ca2+ sensor-kinase complex. Together, these findings identify a critical role of cell group-specific Ca2+ signaling in low K+ responses and indicate an essential and direct role of Ca2+ signals for AKT1 K+ channel activation in roots.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , Potasio/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Animales , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Electrodos , Activación del Canal Iónico/efectos de los fármacos , Lantano/farmacología , Mutación/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Dominios Proteicos , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Factores de Tiempo , Xenopus
11.
Sci Rep ; 6: 36423, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27811978

RESUMEN

The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


Asunto(s)
Arabidopsis/metabolismo , GMP Cíclico/metabolismo , Resistencia a la Enfermedad/fisiología , Guanilato Ciclasa/metabolismo , Animales , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión/química , Glutatión/metabolismo , Guanilato Ciclasa/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteoma/metabolismo , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Ratas , Transcriptoma
12.
Plant Physiol ; 172(3): 1772-1786, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663411

RESUMEN

In flowering plants, successful male reproduction requires the sophisticated interaction between somatic anther wall layers and reproductive cells. Timely degradation of the innermost tissue of the anther wall layer, the tapetal layer, is critical for pollen development. Ca2+ is a well-known stimulus for plant development, but whether it plays a role in affecting male reproduction remains elusive. Here we report a role of Defective in Exine Formation 1 (OsDEX1) in rice (Oryza sativa), a Ca2+ binding protein, in regulating rice tapetal cell degradation and pollen formation. In osdex1 anthers, tapetal cell degeneration is delayed and degradation of the callose wall surrounding the microspores is compromised, leading to aborted pollen formation and complete male sterility. OsDEX1 is expressed in tapetal cells and microspores during early anther development. Recombinant OsDEX1 is able to bind Ca2+ and regulate Ca2+ homeostasis in vitro, and osdex1 exhibited disturbed Ca2+ homeostasis in tapetal cells. Phylogenetic analysis suggested that OsDEX1 may have a conserved function in binding Ca2+ in flowering plants, and genetic complementation of pollen wall defects of an Arabidopsis (Arabidopsis thaliana) dex1 mutant confirmed its evolutionary conservation in pollen development. Collectively, these findings suggest that OsDEX1 plays a fundamental role in the development of tapetal cells and pollen formation, possibly via modulating the Ca2+ homeostasis during pollen development.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Oryza/anatomía & histología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Polen/metabolismo , Muerte Celular , Clonación Molecular , Fragmentación del ADN , Regulación de la Expresión Génica de las Plantas , Homeostasis , Modelos Biológicos , Mutación/genética , Oryza/genética , Oryza/ultraestructura , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Polen/citología , Polen/ultraestructura , Proteínas Recombinantes/metabolismo
13.
Plant Physiol ; 171(4): 2317-30, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27252306

RESUMEN

In eukaryotes, subcellular compartments such as mitochondria, the endoplasmic reticulum, lysosomes, and vacuoles have the capacity for Ca(2+) transport across their membranes to modulate the activity of compartmentalized enzymes or to convey specific cellular signaling events. In plants, it has been suggested that chloroplasts also display Ca(2+) regulation. So far, monitoring of stromal Ca(2+) dynamics in vivo has exclusively relied on using the luminescent Ca(2+) probe aequorin. However, this technique is limited in resolution and can only provide a readout averaged over chloroplast populations from different cells and tissues. Here, we present a toolkit of Arabidopsis (Arabidopsis thaliana) Ca(2+) sensor lines expressing plastid-targeted FRET-based Yellow Cameleon (YC) sensors. We demonstrate that the probes reliably report in vivo Ca(2+) dynamics in the stroma of root plastids in response to extracellular ATP and of leaf mesophyll and guard cell chloroplasts during light-to-low-intensity blue light illumination transition. Applying YC sensing of stromal Ca(2+) dynamics to single chloroplasts, we confirm findings of gradual, sustained stromal Ca(2+) increases at the tissue level after light-to-low-intensity blue light illumination transitions, but monitor transient Ca(2+) spiking as a distinct and previously unknown component of stromal Ca(2+) signatures. Spiking was dependent on the availability of cytosolic Ca(2+) but not synchronized between the chloroplasts of a cell. In contrast, the gradual sustained Ca(2+) increase occurred independent of cytosolic Ca(2+), suggesting intraorganellar Ca(2+) release. We demonstrate the capacity of the YC sensor toolkit to identify novel, fundamental facets of chloroplast Ca(2+) dynamics and to refine the understanding of plastidial Ca(2+) regulation.


Asunto(s)
Aequorina/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio , Calcio/metabolismo , Aequorina/genética , Arabidopsis/citología , Arabidopsis/genética , Transporte Biológico , Cloroplastos/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Mitocondrias/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Proteínas Recombinantes de Fusión , Vacuolas/metabolismo
14.
Plant Cell ; 27(11): 3190-212, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26530087

RESUMEN

Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca(2+) signaling may play a central role in this process. Free Ca(2+) dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca(2+) dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca(2+) uniporter machinery in mammals. MICU binds Ca(2+) and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca(2+) sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca(2+) in the matrix. Furthermore, Ca(2+) elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca(2+) signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca(2+) uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca(2+) uptake by moderating influx, thereby shaping Ca(2+) signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca(2+) signaling in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Motivos EF Hand , Mitocondrias/metabolismo , Arabidopsis/genética , Calcio , Señalización del Calcio , Respiración de la Célula , Citosol/metabolismo , ADN Bacteriano/genética , Mitocondrias/ultraestructura , Mutagénesis Insercional/genética , Filogenia , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Unión Proteica , Transporte de Proteínas , Plantones/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo
15.
New Phytol ; 206(2): 751-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25641067

RESUMEN

Ca(2+) signatures are central to developmental processes and adaptive responses in plants. However, high-resolution studies of Ca(2+) dynamics using genetically encoded Ca(2+) indicators (GECIs) such as Yellow Cameleon (YC) proteins have so far not been conducted in important model crops such as rice (Oryza sativa). We conducted a comparative study of 35S and ubiquitin-10 (UBQ10) promoter functionality in Arabidopsis thaliana and O. sativa plants expressing the Ca(2+) indicator Yellow Cameleon 3.6 (YC3.6) under control of the UBQ10 or 35S promoter. Ca(2+) signatures in roots of both species were analyzed during exposure to hyperpolarization/depolarization cycles or in response to application of the amino acid glutamate. We found a superior performance of the UBQ10 promoter with regard to expression pattern, levels and expression stabilities in both species. We observed remarkable differences between the two species in the spatiotemporal parameters of the observed Ca(2+) signatures. Rice appeared in general to respond with a lower maximal signal amplitude but greatly increased signal duration when compared with Arabidopsis. Our results identify important advantages to using the UBQ10 promoter in Arabidopsis and rice and in T-DNA mutant backgrounds. Moreover, the observed differences in Ca(2+) signaling in the two species underscore the need for comparative studies to achieve a comprehensive understanding of Ca(2+) signaling in plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/análisis , Calmodulina/metabolismo , Proteínas Luminiscentes/metabolismo , Oryza/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/metabolismo , Arabidopsis/citología , Calcio/metabolismo , Señalización del Calcio , Calmodulina/genética , Citoplasma/metabolismo , Expresión Génica , Genes Reporteros , Ácido Glutámico/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/genética , Microscopía Confocal , Oryza/citología , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Transgenes
16.
Plant Physiol ; 167(1): 216-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25367859

RESUMEN

Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Mitocondrias/fisiología , Receptores de Glutamato/genética , Empalme Alternativo/fisiología , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Senescencia Celular/genética , Senescencia Celular/fisiología , Cloroplastos/genética , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Técnicas de Inactivación de Genes , Marcación de Gen , Mitocondrias/genética , Mitocondrias/ultraestructura , Membranas Mitocondriales/fisiología , Membranas Mitocondriales/ultraestructura , Receptores de Glutamato/fisiología
17.
Plant Physiol ; 163(3): 1230-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24082028

RESUMEN

In planta, very limited information is available about how the endoplasmic reticulum (ER) contributes to cellular Ca(2+) dynamics and homeostasis. Here, we report the generation of an ER-targeted Cameleon reporter protein suitable for analysis of Ca(2+) accumulation and dynamics in the lumen of the ER in plant cells. Using stably transformed Arabidopsis (Arabidopsis thaliana) plants expressing this reporter protein, we observed a transiently enhanced accumulation of Ca(2+) in the ER in response to stimuli inducing cytosolic Ca(2+) rises in root tip cells. In all experimental conditions, ER Ca(2+) dynamics were substantially different from those monitored in the cytosol. A pharmacological approach enabled us to evaluate the contribution of the different ER-resident Ca(2+)-ATPase classes in the regulation of the ER Ca(2+) homeostasis. Taken together, our results do not provide evidence for a role of the ER as a major source that releases Ca(2+) for stimulus-induced increases in cytosolic Ca(2+) concentration. Instead, our results show that the luminal ER Ca(2+) elevations typically follow cytosolic ones, but with distinct dynamics. These findings suggest fundamental differences for the function of the ER in cellular Ca(2+) homeostasis in plants and animals.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Adenosina Trifosfato/farmacología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Unión al Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/metabolismo , Homeostasis/efectos de los fármacos , Cinética , Microscopía Confocal , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Imagen de Lapso de Tiempo/métodos
18.
Cold Spring Harb Protoc ; 2013(8): 700-3, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23906906

RESUMEN

Temporally and spatially defined changes in cellular calcium (Ca(2+)) concentration represent stimulus-specific signals and regulate a myriad of biological processes. The development of ratiometric Ca(2+) reporter proteins like Yellow Cameleons (YCs) has greatly advanced our ability to analyze Ca(2+) dynamics in vivo with unprecedented spatial and temporal resolution. In plants, the application of these Ca(2+) reporter proteins has been pioneered for the investigation of Ca(2+) dynamics in guard cells, and recently their use has been extended to other single-cell models like growing pollen tubes and root hairs. However, in plants, the use of YC reporter proteins has largely remained restricted to the investigation of cytoplasmic alterations of Ca(2+) concentrations. Here, we provide an introduction to current methods for imaging Ca(2+) dynamics with increasing sophistication.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/análisis , Técnicas Citológicas/métodos , Colorantes Fluorescentes/metabolismo , Imagen Óptica/métodos , Plantas/química , Transgenes , Proteínas de Unión al Calcio/genética , Cationes Bivalentes/análisis , Coloración y Etiquetado/métodos
19.
Cold Spring Harb Protoc ; 2013(7): 665-9, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23818665

RESUMEN

This protocol describes a classical method for measuring cytoplasmic Ca(2+) dynamics in Arabidopsis thaliana guard cells. The Förster (fluorescence) resonance energy transfer (FRET)-based genetically modified Ca(2+) indicator Yellow Cameleon YC3.6, under the control of the guard cell-specific promoter GC1, is used for Ca(2+) measurements.


Asunto(s)
Arabidopsis/química , Calcio/análisis , Citoplasma/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/genética , Cationes Bivalentes/análisis , Genes Reporteros , Coloración y Etiquetado/métodos
20.
Cold Spring Harb Protoc ; 2013(7)2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23818666

RESUMEN

This protocol describes a method for imaging cytoplasmic Ca(2+) dynamics in roots with high resolution using confocal laser scanning microscopy (CLSM). The Förster (fluorescence) resonance energy transfer (FRET)-based genetically modified Ca(2+) indicator Yellow Cameleon YC3.6, stably expressed in plants under the control of the ubiquitin promoter UBQ10, is used for Ca(2+) measurements. This protocol enables imaging of 5- to 7-d-old seedlings with high-magnification objectives (25×, 40×, and 63×).


Asunto(s)
Arabidopsis/química , Calcio/análisis , Citoplasma/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Raíces de Plantas/química , Proteínas de Unión al Calcio/metabolismo , Cationes Bivalentes/análisis , Expresión Génica , Genes Reporteros , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...