Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(60): 7777-7780, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38976316

RESUMEN

Polyethylene terephthalate (PET) is one of the most used polymers, but the non-degradable and persistent nature of PET waste in the environment is a global menace. Hence upcycling PET waste becomes indispensable. Herein, we introduce the first metal-free electrochemical-upcycling of PET into value-added chemicals and H2 fuel using an organo-electrocatalyst (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO). Electrolysis at pH 10 produces glycolate and oxalate exclusively while at pH 14, over-oxidation and subsequent C-C bond cleavage produce formate and carbonate as well. Tuning the rate and product selectivity via pH regulation with mechanistic insight displays a sustainable route to implement waste PET recycling.

2.
Small ; : e2311946, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446102

RESUMEN

The convergence of water electrolysis and alkaline fuel cells offers captivating solutions for sustainably harvesting energy. The research explores both hydrazine-assisted seawater electrolysis (hydrazine oxidation reaction (HzOR) and hydrogen production reaction (HER)), as well as alkaline hydrazine fuel cell reactions (HzOR and Oxygen reduction reaction (ORR)) by using a bifunctional cobalt polyaniline derived (Co PANI/C) catalyst. The catalyst shows excellent performance for hydrazine-assisted seawater electrolysis in harsh seawater environments to produce H2 as fuel with nearly 85% Faradaic efficiency and during alkaline HzOR, the bifunctional catalyst generates H2 with 95% Faradaic efficiency by acting as both anode and cathode side catalyst. Also, the same catalyst requires only a potential of 0.34 V versus RHE and 0.906 V versus RHE for HzOR and ORR, respectively, in 1 m KOH, which makes this overall process useful for a Hz/O2 fuel cell.

3.
Dalton Trans ; 53(5): 2324-2332, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38205727

RESUMEN

This manuscript describes the syntheses, structures and magnetism of MnIII-CaII/SrII complexes which are compositionally relevant in the context of the oxygen evolving complex (OEC) of photosystem II (PS II). A series of trimetallic tetraoxo complexes containing redox-inactive metal ions CaII or SrII were synthesized using a tetranucleating ligand framework. The structural characteristics of these complexes, with the oxido ligands bridging the redox-inactive metals and the manganese centres, make them particularly relevant to biological and heterogeneous metal-oxido clusters. Electrochemical studies of these compounds show that the reduction potentials are highly dependent upon the Lewis acidity of the redox-inactive metal, identifying the chemical basis for the observed differences in electrochemistry. This correlation provides insights into the role of the CaII/SrII ion in modulating the redox potential of the OEC and of other redox-inactive ions in tuning the redox potentials of other metal-oxide electrocatalysts. Temperature dependent magnetic measurements have also been performed for the complexes.

4.
Chem Commun (Camb) ; 59(77): 11528-11531, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37672289

RESUMEN

Aerobic substrate oxidation reactions catalyzed by a heterogeneous catalyst can be looked upon as two independent half-cell reactions, viz. anodic substrate oxidation and the cathodic oxygen reduction reaction (ORR). In this context, Fe PANI/C, a well-known catalyst for the ORR, is chosen to validate this hypothesis, wherein the anodic reaction is hydrazine oxidation. Fe PANI/C shows excellent activity in terms of the electrochemical ORR and hydrazine oxidation in both alkaline aqueous and non-aqueous media and taken together the aerobic oxidation efficacy of hydrazine-like small organic molecules is correlated with the electrochemical outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA